
ABSTRACT

Along the flanks of several valleys in the Swiss Alps, well-preserved fault 
scarps occur between 1900 and 2400 m altitude, which reveal uplift of the val-
ley-side block relative to the mountain-side block. The height of these uphill-
facing scarps varies between 0.5 m and more than 10 m along strike of the 
fault traces, which usually trend parallel to the valley axes. The formation of 
the scarps is generally attributed either to tectonic movements or gravitational 
slope instabilities. Here we combine field data and numerical experiments to 
show that the scarps may be of composite origin, i.e. that tectonic and gravita-
tional processes as well as postglacial differential uplift may have contributed 
to their formation. Tectonic displacement may occur as the fault scarps run 
parallel to older tectonic faults. The tectonic component seems, however, to be 
minor as the studied valleys lack seismic activity. A large gravitational compo-

nent, which is feasible owing to the steep dip of the schistosity and lithologic 
boundaries in the studied valleys, is indicated by the uneven morphology of 
the scarps, which is typical of slope movements. Postglacial differential uplift 
of the valley floor with respect to the summits provides a third feasible mecha-
nism for scarp formation, as the scarps are postglacial in age and occur on the 
flanks of valleys that were filled with ice during the last glacial maximum. 
Finite-element experiments show that postglacial unloading and rebound can 
initiate slip on steeply dipping pre-existing weak zones and explain part of 
the observed scarp height. From our field and modelling results we conclude 
that the formation of uphill-facing scarps is primarily promoted by a steeply 
dipping schistosity striking parallel to the valley axes and, in addition, by me-
chanically weaker rocks in the valley with respect to the summits. Our findings 
imply that the identification of surface expressions related to active faults can 
be hindered by similar morphologic structures of non-tectonic origin. 

Introduction

Mountain belts like the Himalayas or the European Alps form 
owing to the collision of two continental plates (e.g. Molnar 
& Tapponnier 1975; Schmid et al. 1996).  The total amount of 
convergence between the two plates is usually accommodated 
by many faults, each of which slips at a lower rate than the 
total convergence velocity (e.g. Bilham et al. 1997; Wang et 
al. 2001). Identification of active faults and determination of 
neotectonic displacements is crucial to decipher the current 
deformation pattern within a mountain belt and, ultimately, 
to estimate the seismic potential of different regions (Tappon-
nier & Molnar 1979; van der Woerd et al. 2001; Hetzel et al. 
2004; Persaud & Pfiffner 2004). The identification of active 
tectonic faults may, however, be hindered by non-tectonic 
processes like gravitational slope movements that have mor-
phologic characteristics similar to the surface expression of 
active tectonic faults. 

A particular class of such morphologic structures that 
may or may not have a tectonic origin are uphill-facing scarps 
(also called antislope, counter, or antithetic scarps). They typi-
cally occur along the flanks of valleys and form by uplift of 
the valley-side block relative to the mountain-side block. Up-
hill-facing scarps have been reported from many mountain 
ranges, e.g., the Rocky Mountains (McCalpin & Irvine 1995), 
the Coast Mountains of British Columbia (Bovis 1982), Alaska 
(Radbruch-Hall 1978), the Northern Carpathian Mountains 
(Mahr & Nemcok 1977), the Pyrenees (Gutiérrez-Santolalla 
et al. 2005) and in Scotland (Jarmann 2006). They were earlier 
described in the European Alps (Jäckli 1951, 1965) and exten-
sively studied by numerous workers (e.g. Renner 1982; Eckardt 
et al. 1983; Agliardi et al. 2001; Persaud & Pfiffner 2004; Amann 
2005; Hippolyte et al. 2006; Jomard 2006). The formation of the 
scarps has been attributed to different mechanisms, which can 
be summarized as gravitational slope deformation (Hippolyte 
et al. 2006; Gutiérrez-Santolalla et al. 2005), neotectonic fault-
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ing (Eckhardt et al. 1983; Persaud & Pfiffner 2004) or differen-
tial postglacial uplift (Jäckli 1965; Jarman 2006). Which of the 
proposed mechanisms is definitely responsible for scarp forma-
tion is still not fully resolved.

Here we present results from a field study in the central 
Swiss Alps, where the abundant occurrence of uphill-facing 
scarps provides an ideal opportunity to explore their character-
istics and formation mechanisms. In addition to the field study, 
we performed finite-element experiments to test if the scarps, 
which developed in formerly glaciated valleys, may be caused 
by postglacial rebound. The aim of this study was to investigate, 
if all three processes in question – differential postglacial uplift, 
gravitational slope movement and, to a minor extent, crustal 
deformation – contributed to the formation of the uphill-fac-
ing scarps.

Geological setting and field observations

In the central Swiss Alps, faults with uphill-facing scarps cluster 
mainly between 1900 and 2400 m altitude along valley flanks of 
the Upper Rhone valley, the Urseren valley, the Upper Rhine 
valley, and along the Bedretto valley (Fig. 1; e.g. Eckardt et al. 
1983; Ustaszewski 2007; Ustaszewski & Pfiffner 2008). In the 
Upper Rhone valley, the Urseren valley, the Upper Rhine val-
ley, faults occur over a distance of ~90 km between the towns 
Brig and Trun, whereas in the Bedretto valley they are present 
over a distance of ~10 km. The length of the individual faults 
varies between a few hundreds of meters to 7 km. The faults 
strike predominantly parallel to the valley and are character-
ized by linear surface traces, indicating vertical faults. They tend 
to follow pre-existing geological structures like lamprophyric 
dykes (Keller & Schneider 1982; Amann 2005), lithologic 
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boundaries, foliation (Fig. 2a) and fault zones. The faults occur 
– from north to south – in the following tectonic units (Figs. 1 
and 4): the Aar massif with the central Aar granite and south-
ern gneiss zone, the Urseren zone (Mesozoic metasediments) 
in the Urseren valley, the Gotthard massif with granites and 
gneisses, the Nufenen zone (Mesozoic metasediments) in the 
Bedretto valley, and schists and gneisses of Penninic sediment 
and basement nappes. Schistosity is predominantly vertical and 
parallel to the valley-axes, striking SW–NE to WSW–ENE.

The uphill-facing scarps related to the observed faults oc-
cur on both flanks of the valleys and show a pronounced mor-
phology. Where bedrock scarps are vertical or steeply inclined 
towards the mountain ridge they are often exposed and look 
fresh. No indicators of slip directions were found on the fault 
scarps. Some scarps are partly to completely covered by slope 
talus and/or vegetation (Fig. 2b). In the depression behind the 
fault, slope talus and debris have accumulated. This material 
often seals the base of the depression and water loggings and 
small lakes are dammed by the uphill-facing scarp (Figs. 2b, c, 
g). The height of the scarps varies from 50 cm to more than 
10 m, although even higher offsets may be plausible as debris 
in the depressions behind the faults covers the lower part of the 
scarp. Note that the scarp height varies along strike of the fault 
(see Figs. 2d–e). Within 100 m distance, the offset can change 
from 0.5 to 10 meters. The highest displacements occur where 
the scarp-related fault crosses a ridge on a valley flank, and 
they are smallest where the fault transects a side-valley.

The depth extent of the scarp-related faults can be derived 
from observations made by Furrer (1948) and Keller & Schnei-
der (1982). Furrer (1948) reports extensive water inleakage dur-
ing the excavation of the Riederhorn gallery at the Riederalp 
(Upper Rhone valley, ~6 km NE of Brig). On the Riederalp, a 
dense array of faults with uphill-facing scarps occurs, and deep-
reaching toppling phenomena can be observed along the valley 
flank. The building of the Riederhorn gallery led to a severe 
ebbing of numerous springs in the area above the gallery. Fur-
rer explains that the springs were joint-related overflow springs 
and the penetration of the joints by the gallery caused their 
drainage. This implies that these joints, which we relate to the 
scarp-associated faults, are open to a depth of at least 700 m. 
Keller & Schneider (1982), who report geotechnical problems 
during excavation of the Bedretto tunnel caused by toppling 
phenomena, derive a base plane of the toppling, which reaches 
150 to 200 m below today’s valley floor. They explain the po-
sition of the base plane due to glacial over-deepening of the 
Bedretto valley and enhanced erosion of evaporitic sediments 
of the Nufenen Zone at the valley floor, which both created 
space for the mass movements. The toppling observed in the 
tunnel is linked to the uphill-facing scarps on the surface above 
the tunnel (Keller & Schneider, 1982).

The age of the fault scarps is constrained to be postglacial 
because they offset moraines and slope talus (Figs. 2c–d). Inter-
estingly, Jäckli (1951) and Renner (1982) reported larger offsets 
of older, Daun-stage moraines (Older Dryas stadial, ~12'000 14C 
yr BP; Preusser, 2004) than of younger, Egesen-stage moraines 

(Younger Dryas stadial, ~10'000 14C yr BP; Preusser, 2004). This 
indicates that the faults accumulated more slip before ~11'000 
years than afterwards. Furthermore, the scarps occur in areas 
that were heavily glaciated during the Last Glacial Maximum. 
As the glaciers eroded deeply into the bedrock and polished 
the rock surfaces (Kelly et al. 2006; Ivy-Ochs et al. 2007; Benn 
& Evans 1998), it seems unlikely that the scarps should survive 
these abrasive processes. 

After their formation, some uphill-facing scarps have been 
cut by recent fast gravitational movements like debris flows 
(Fig. 2f), which partly erode the scarps. In the Urseren and 
Bedretto valleys, the valley flanks are also affected by slow 
deep-seated gravitational slope deformations. This can be ob-
served by antithetic faults dipping towards the mountain flank 
(Figs. 3a–b), counter scarps and associated troughs, extension 
joints, and toppling phenomena (Fig. 3c, d). In the study area, 
flexural toppling prevails, because rocks are intensely foliated 
forming narrow packages of gneiss or schist. Only in few loca-
tions, mainly in less densely foliated gneisses, block toppling is 
observed. The uneven topography of the valley flanks and the 
scarps with pronounced along-strike variations in their height 
resemble the morphologic expressions caused by large-scale 
sagging processes and the accompanying smaller-scale gravita-
tional processes (Agliardi et al. 2001; Dramis & Sorriso-Valvo 
1994; Gutiérrez-Santolalla et al. 2005 and references therein; 
Hippolyte et al. 2006; Madritsch & Millen 2007). At least some 
of the scarp-related faults are still active: At the Oberalp Pass, 
geodetic measurements along a ~170-m-long profile reveal 
height changes of ~0.7 mm/yr across a fault with an uphill-fac-
ing scarp (Eckhardt et al. 1983). 

In summary, the valleys with uphill-facing scarps have the 
following characteristics in common. First, they are character-
ized by similar geology, with granite gneisses in the summit ar-
eas (except the southern side of the Bedretto valley), schists 
and gneisses along the valley shoulders and Triassic metamor-
phic sediments at the valley floor (Fig. 4). The scarp-related 
faults usually parallel pre-existing structures and may be reacti-
vated older tectonic faults. Second, the predominant schistosity 
in all valleys is vertical and parallel to the valley axes. Third, the 
scarps are of postglacial age and share a similar glacial history, 
i.e. all valleys, in which uphill-facing scarps developed, were 
located beneath large ice domes during the Last Glacial Maxi-
mum (Florineth & Schlüchter 1998; Kelly et al. 2004). These ice 
domes started to form about 35'000 years ago (e.g. Ivy-Ochs et 
al. 2006).

Numerical Modelling 

The postglacial age of the scarps suggests a relationship be-
tween their formation and the deglaciation of the valleys. As 
Jäckli (1965) proposed, deglaciation might have lead to dif-
ferential uplift of the valley floor with respect to the summits. 
Calculations by Gudmundsson (1994) and Barletta et al. (2006) 
indeed showed that melting of the glaciers in Switzerland in-
duced rebound and uplift. Persaud & Pfiffner (2004) analyzed 
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the effect of an ice load and the postglacial rebound using a 
numerical model, in which the lithosphere of the Alps is rep-
resented by a continuous plate of equivalent elastic thickness. 
Their model does not include individual faults and predicts an 
orogen scale uplift pattern that has a wavelength larger than 
the one observed from present-day uplift (Kahle et al. 1997). 
The model, however, is not suited to analyze the valley-scale 
uplift pattern. 

Here we apply a different model approach that includes 
pre-existing fault planes, which may be activated during de-
glaciation if a critical shear stress is reached, in order to test 
if uphill-facing scarps may be caused by postglacial unloading 
and rebound. The model setup is inspired by the observation 
that re-activation of pre-existing weak zones may play a cru-
cial role in the formation of uphill-facing scarps (Jäckli 1965; 
Eckardt et al. 1983). Our model setup allows us to calculate 
both the rebound of the Alps after the Last Glacial Maximum 
on a lithospheric scale and to investigate the effects of postgla-
cial unloading and rebound on local crustal deformation. Our 
models are carried out using the commercial software package 
ABAQUS (Hibbitt et al. 2006). 

Setup of the finite-element model

The model represents a 1500-km-long and 100-km-thick litho-
sphere, which is divided into an elastic upper crust, a viscoelastic 
lower crust and a viscoelastic lithospheric mantle (Fig. 5a). The 
rheological properties of the layers (cf. Turcotte & Schubert 
2002) are given in Figure 5. Based on a topographic profile 
(Fig. 4a) the topography of the Urseren valley is included in the 
centre of the model (Fig. 5). Seven potential slip planes are in-
corporated into the crust (Fig. 5b): Fault plane 1 represents the 
contact between the central Aar granite and southern gneiss 
zone of the Aar massif, whereas fault plane 7 represents the 
boundary between the northern gneiss zone of the Gotthard 
massif and the Gotthard ortho-gneiss (Figs. 4–5). To account for 
the contrast between the metasediments and the Aar granites 
or Gotthard orthogneisses, respectively, the approximately top 
5 km of the region between fault planes 1 and 7 have a lower 
Young’s modulus (grey-shaded area in Fig. 5). Fault planes 2–5 
represent the boundaries between different schists or foliation 
planes. Initiation and subsequent slip on the fault planes, which 
are defined to a depth of 5 km below the valley floor, is con-
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trolled by a Mohr-Coulomb criterion with a friction coefficient 
of μ = 0.4 and a maximum shear stress of τmax = 2 × 106 Pa (e.g. 
Weijermars 1997). The latter limits the shear stress that may 
be reached on the fault planes and reflects their mechanical 
weakness. Experiments were carried out with vertical (Fig. 5b), 
45°-dipping and 22°-dipping fault planes (not shown in Fig. 5). 
The inclined faults dip away from the valley slope, i.e. the three 
model faults north of the valley axis dip to the northwest, 
whereas the four faults south of the valley dip southeastward. 

Gravity is included in the model as a body force. We imple-
ment isostasy by adding an elastic foundation, which repre-
sents the density of the asthenosphere (ρasth = 3200 kg/m3) and 
a lithostatic pressure (Plitho = 3.03 × 109 Pa) at the bottom of the 
model. The viscosity of the asthenosphere (ηasth = 1 × 1019 Pa s) 
is represented by linear dashpot elements at the bottom of the 

model. At the beginning of each experiment, the model attains 
isostatic equilibrium. Afterwards, the left and right model sides 
are fixed in the horizontal and the vertical directions and pres-
sure loads representing the glaciers in the Urseren and neigh-
bouring valleys are applied (Fig. 5a). The magnitude of the ice 
load in the Urseren valley (Fig. 5b) is calculated from the in-
ferred altitude of the ice surface at 2600 m (Jäckli 1965; Flori-
neth & Schlüchter 1998). In the model we apply a hydrostatic 
pressure, which linearly increases from zero at 2600 m to a max-
imum pressure that is equivalent to 1225 m of ice at the valley 
floor (Fig. 5a). For the regions north and south of the Urseren 
valley, we average the ice thickness over 25-km-long-segments 
of a profile running from Aarau to Caccivio (see Fig. 1). The es-
timated values of the ice thickness along this profile are shown 
in Figure 5a. The magnitude of the ice load is at a maximum at 
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the beginning of the model run and then decreases linearly to 
zero within a time span of 1, 3 or 10 ka in different experiments, 
respectively, to investigate if the rate of deglaciation affects the 
formation and height of the scarps. We prefer the model with 
a deglaciation within 3 ka because surface exposure dating of 
glacial deposits and bedrock surfaces suggests that most gla-
ciers retreated between ~21 ka and ~18 ka BP (Ivy-Ochs et al. 
2006). 

Results of the finite-element experiments

The first set of experiments is carried out with vertical fault 
planes. Application of the ice load leads to ~135 m of subsid-

ence in the centre of the model. During presence of the ice, no 
slip occurs on the fault planes, i.e. the Mohr circle for stress has 
not yet reached the line of the Mohr-Coulomb criterion at any 
point on the fault. When the removal of the ice load begins, slip 
on the fault is initiated, i.e. the Mohr circle touches the line of 
the Mohr-Coulomb criterion. The scarps that form at the model 
surface as result of the slip on the fault planes are uphill-facing 
scarps on both sides of the valley (Fig. 6a). For a deglaciation 
within 3 ka, maximum scarp heights of 2.46 m and 1.11 m are 
attained on the northernmost and southernmost fault planes, 
respectively (Fig. 6a, Table 1). The difference in the scarp 
height is caused by the asymmetry of the valley. Scarps related 
to fault planes 2–6 are between 0.5–0.8 m high (Table 1). Faster 
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deglaciation within 1 ka leads to slightly higher scarp heights, 
whereas unloading within 10 ka only slightly decreases the final 
scarp heights (Table 1). The displacement on the faults is larg-
est to a depth of 1 km below the surface and decreases beneath 
this depth (Fig. 6b). As the temporal slip evolution in Figure 6c 
shows, the slip rates on the individual faults vary considerably 
until the final total displacements are achieved. At the onset of 
the deglaciation, the outermost faults (faults 1 and 7) experi-
ence a short phase of rapid motion, which is followed by a lon-
ger time interval during which slip accumulation almost ceases. 
Afterwards, slip continues at a constant rate before it ceases 
again near the end of the deglaciation (Fig. 6c). These three 
phases in the evolution – enhanced slip at the onset of deglacia-
tion followed by a phase during which most slip is accumulated 
and finally cessation of slip at the end of unloading – occur in all 
experiments irrespectively of the deglaciation rate. Faults 2–6 
lack the incipient phase with rapid slip and partly also the first 
phase of slip cessation (Fig. 6c).

In case of 45°-dipping fault planes, unloading of the model 
within 3 ka causes slip only on the northernmost and southern-
most fault planes (no. 1, 7), where uphill-facing scarps of 1.01 m 
and 0.28 m height develop (Table 1). Again, a shorter unload-
ing phase slightly increases the scarp height, whereas a longer 
unloading phase decreases it. On both fault planes, the total dis-
placement at the surface is ~1.5 m less than in the experiments 
with vertical fault planes. When the fault planes have a shallow 
dip of 22°, no slip occurs on the faults (Table 1). 

To evaluate how the rheological properties of the rocks in 
the valley influence scarp formation, we used the setup with 
vertical fault planes and a deglaciation within 3 ka and varied 

the Young’s modulus in the region between the faults 1 and 7 
(Fig. 5b). If the Young’s modulus is the same in the entire up-
per crust (E = 0.5 × 1011 Pa), all faults still show uphill-facing 
scarps but the displacements are lower than in the first experi-
ment. For example, faults 1 and 7 show scarp heights of 1.29 m 
and 0.52 m, respectively. Decreasing the Young’s modulus to 
E = 0.4 × 1011 Pa (and in a second run to E = 0.3 × 1011 Pa) in 
the region between faults 1 and 7, i.e. to lower values than in 
the neighbouring upper crust, increases the scarp heights on 

height of scarp (total displacement) [m] 
after deglaciation in

vertical fault planes 1 ka 3 ka 10 ka

1 2.55 2.46 2.46
2 0.76 0.73 0.73
3 0.67 0.67 0.68
4 0.79 0.76 0.75
5 0.69 0.65 0.64
6 0.53 0.52 0.51
7 1.18 1.11 1.10

45°-dipping fault planes 1 ka 3 ka 10 ka

1 1.01 (1.43) 0.94 (1.33) 0.90 (1.27)
2–6 0 0 0
7 0.28 (0.40) 0.21 (0.29) 0.15 (0.21)

22°-dipping fault planes 1 ka 3 ka 10 ka

1–7 0 0 0

Table 1. Numerical modelling results showing the scarp heights at faults 1–7 
for different rates of deglaciation. For location and numbering of fault planes 
see Figure 5.

0

0

2 31

2

4

Model time after onset of deglaciation [ka] 

a) b) c)

1

2.46 m

H
ei

gh
t o

f m
od

el
 s

ca
rp

 [m
]

D
ep

th
 b

el
ow

 m
od

el
 s

ur
fa

ce
 [k

m
]

0 21

1

0

2
1

7

4
2

65

3

7

1.11 m

Displacement on model fault [m]

1
2

34

6

5

7

accelerated slip

accumulation of displacement cessation of slip

Fig. 6. Results of the model with vertical fault planes and deglaciation within 3 ka. a) Detail sections showing the uphill-facing scarps that develop as a conse-
quence of deglaciation on fault 1 north of the valley axis and fault 7 south of the valley axis. No vertical exaggeration. b) Plot showing the displacement on the 
fault planes 1–7 versus depth below model surface. c) Evolution of fault slip at the surface. Numbers refer to the fault planes shown in Figure 5b. 



 Composite faults in the Swiss Alps 231

faults 1 and 7 to 1.60 m (1.93 m) and 0.65 m (0.93 m), respec-
tively.

Discussion

Our field observations and numerical experiments reveal that 
steeply dipping weak zones are a necessary pre-requisite for 
the formation of uphill-facing scarps. These weak zones may 
be defined by older faults, lithologic boundaries or schistosity. 
In contrast, shallow-dipping discontinuities inhibit the forma-
tion of uphill-facings scarps, which agrees with the observation 
that valleys incised in rocks with shallow dipping foliation (e.g. 
Prättigau, Rhone Valley downstream of Leuk, Rhine Valley 
downstream of Ilanz, Val d’Hérens) consistently lack uphill-
facing scarps. Weaker mechanical properties (a lower Young’s 
modulus) of the rocks in the valley compared to the ridges ad-
ditionally promote scarp formation in the model. This agrees 
with the field observation that the valleys with uphill-facing 
scarps consist of pervasively foliated metasediments, which are 

mechanically weaker than the granites and gneisses comprising 
the ridges. 

The difference in the behaviour of vertical and shallow-dip-
ping fault planes during unloading is readily explained by the 
different orientation of the principal stresses with respect to 
the zones of weakness (e.g. Twiss & Moores 2007, page 221–
224). In case of a vertical fault plane, the maximum principal 
stress σ1 is oriented at an angle of ~30° to the fault (Fig. 7a; 
applied sign convention: compression positive). To analyse the 
state of stress at point P (Fig. 7a), the orientation of the princi-
pal stresses is plotted in physical space for a rock with vertical 
planes of weakness (Fig. 7b). The angle θ between σ1 and the 
normal on the plane of weakness is 60° (Fig. 7b). In the Mohr 
diagram, the anisotropy of the rock is represented by two frac-
ture criteria, which take into account that the strength on the 
plane of weakness is lower than across the plane of weakness 
(Fig. 7b). For a vertical fault plane and θ = 60°, which becomes 
2θ = 120° in Mohr space (black dot on Mohr circle), the shear 
stress on the weak plane reaches the critical shear stress de-
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Fig. 7. a) Enlarged section of the model showing the orientation of the maximum and minimum principal compressive stresses σ1 and σ3 near the vertical model 
fault 1. No vertical exaggeration. b) State of stress at P in physical space (upper row) and Mohr space (lower row). The vertical anisotropy of the rock (upper 
row) represents the mechanically weak planes formed by vertical lithologic boundaries and schistosity. The angle θ between σ1 and the normal on the weak 
plane is 60°. In the Mohr diagram, the orientation of the weak plane is given by the angle 2θ = 120° (black dot on Mohr circle). The two fracture criteria illustrate 
that the critical shear stress for slip across the weak plane (solid line) is larger than the shear stress required for slip on the weak plane (dashed line). Slip on 
the weak plane occurs because its orientation is such that the Mohr circle touches the fracture criterion (dashed line), i.e. the critical shear stress on the weak 
plane is reached. c) Modelled orientation of σ1 and σ3 near fault 1 dipping 22°. d) State of stress at P in physical space (left) and Mohr space (right). The angle 
θ between σ1 and the normal on the weak plane is 5°. The Mohr diagram shows that the shear stress on the fault plane with an orientation of 2θ = 10° is lower 
than the critical shear stress and thus no slip occurs on the fault.
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fined by the fracture criterion for the weak plane (Fig. 7b). The 
resulting slip direction leads to uplift of the valley-side block 
and hence to the formation of an uphill-facing scarp (Fig. 7b). 
Thereby, faults 1 and 7 show the fastest slip initiation and the 
largest displacement because they are optimally oriented with 
respect to σ1, whereas σ1 is inclined slightly steeper around 
faults 2–6. In contrast, σ1 is approximately perpendicular to 
a 22°-dipping fault at point P (Fig. 7c), i.e. the normal on the 
plane of weakness forms an angle of θ = 5° with σ1 (Fig. 7c). As 
the Mohr diagram shows, the shear stress on the plane of weak-
ness is below the critical shear stress for the weak plane. Thus, 
no slip occurs on the shallow-dipping fault plane.

With respect to the formation mechanisms, we infer that up-
hill-facing scarps develop owing to the combined effect of grav-
itational slope movements as observed in the field, postglacial 
differential uplift derived from the models, and crustal defor-
mation suggested by the tectonic setting (Fig. 8). We therefore 
propose the term “composite” fault for these structures. In con-
trast, most previous workers explained the formation of uphill 
facing scarps either by gravitational movements only (e.g. Hip-
polyte et al. 2006) or speculated about post-glacial rebound as 
the driving mechanism (e.g. Jäckli, 1965). In this study, it could 
be shown for the first time that post-glacial rebound can cause 
uphill-facing scarps in the Swiss Alps. Our approach combines 
the different interpretations and emphasizes the composite ori-
gin of these faults due to gravitational movements, post-glacial 
rebound and crustal deformation.

Depending on the local setting, the three mechanisms may 
be of different relative importance for the evolution of an in-
dividual composite fault. In the central Swiss Alps, postglacial 
unloading and rebound played a major role for the slip initia-
tion on the composite faults as suggested by the numerical ex-
periments. Furthermore, our models show that postglacial dif-
ferential uplift as proposed by Jäckli (1965) indeed provides a 
feasible mechanism for the formation of uphill-facing scarps. 
Repeated re-activation of the steeply dipping weak zones af-
ter the earlier glaciations of the Alps may have induced their 
further weakening. The modelled slip accumulation during 
deglaciation is in accordance with the observation that a con-
siderable portion of the displacement on the faults occurred 
prior to the Egesen-stage in the Alps. Our results imply that 
deglaciation of the Alps did not only lead to uplift as shown 
by Gudmundsson (1994) and Persaud & Pfiffner (2004), but 
also affected faulting by changing the stress in the upper crust. 
Such a causal relationship between deglaciation, rebound and 
faulting has long been inferred for other regions that expe-
rienced postglacial unloading, for example, Scandinavia (Ar-
vidsson 1996; Stewart et al. 2000) and North America (Adams 
1989; Sauber et al. 2000). As numerical models without faults 
showed, the stress changes induced by postglacial unloading 
and rebound are sufficient to induce faulting (e.g. Johnston 
et al., 1998). Recent models that explicitly included a fault 
quantify the variations in the fault slip rate caused by glacial-
interglacial changes in surface loads (Hetzel & Hampel 2005; 
Hampel & Hetzel 2006). 
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As field observations show, fault slip owing to postglacial 
unloading can, however, not account for the total displacement 
on the faults as the modelled maximum scarp height in our ex-
periments is one order of magnitude smaller than the observed 
maximum displacement in the field (Table 1). Based on our 
field observations, we attribute most of the additional displace-
ment to gravitational slope movements like large-scale sack-
ung (Fig. 3a) and toppling (Fig. 3b) because these processes can 
explain the large variations of the scarp height along strike of 
the composite faults. As suggested by three-dimensional physi-
cal models, deep-seated landslides provide a feasible mecha-
nism for the formation of uphill-facing scarps (Bachmann et 
al. 2004). Furthermore, the observation that displacements are 
largest when the fault crosses a ridge on the valley flank agrees 
with the fact that toppling mechanisms act most strongly on the 
bedrock at ridges (Fig. 8a). Gravitational slip might contribute 
up to several meters to the total displacement. For example, at 
the Oberalp Pass, a rough estimate of 7 m can be derived for 
the gravitational slip during the last 10 ka using recent slip rates 
of a fault (Eckhardt et al. 1983). Note, however, that gravita-
tional slope movements might not have a constant long-term 
slip rate, because they are influenced by climate, e.g. periods of 
strong rainfall or snow melt (Brückl & Parotidis 2005; Sartori 
et al. 2003). 

In contrast to slip by gravitational slope movements, the 
tectonic component on the composite faults seems to be mi-
nor, which agrees with the low recent seismicity (e.g. Baer et 
al. 1997; Deichmann et al. 2004, 2006) and negligible uplift of 
the study area (Kahle et al. 1997). Some composite faults in the 
Upper Rhone Valley, which are associated with joints that are 
open to a depth of over 700 m (Furrer 1948), could be related 
to extension in the uppermost part of the orogen. Two mecha-
nisms are feasible to explain this extension. (1) As Selzer (2006) 
and Selzer et al. (2008) show, basal accretion and associated 
uplift of crustal flakes in the core of a growing orogen lead to 
horizontal extension parallel to the convergence direction in 
the uppermost part. (2) Bulging of the Aar massif basement 
block is associated with subhorizontal extension at the base-
ment-cover contact (Kammer 1985). Ongoing convergence in 
the Alps – even if in a waning stage – could thus be held respon-
sible for the observed extension.

Postglacial differential uplift might have contributed to 
the formation of uphill-facing scarps also in other regions, for 
example, the Rocky Mountains, the Pyrenees, Scotland or the 
Argentera Mercantour Massif in southeastern France (Rad-
bruch-Hall 1978; Flageollet 1989; Gutiérrez-Santolalla et al. 
2005; Jarman 2006; Jomard 2006). Similar to the Swiss Alps, 
the scarps in these regions occur on the flanks of formerly 
glaciated valleys and strike parallel to the valley axes. Most 
of these authors have so far inferred gravitation as forma-
tion mechanism of the uphill facing scarps in these regions, 
partly triggered by the destabilization of over-steepened val-
ley flanks after the retreat of the glaciers, partly triggered by 
earthquakes (Radbruch-Hall 1978; Gutiérrez-Santolalla et al. 
2005). In contrast, Jarman (2006) argues for an additional in-

fluence of postglacial rebound. His speculation would be sup-
ported by our findings. 

Conclusion

Field observations and numerical experiments show that faults 
with uphill-facing scarps develop only in valleys with steeply 
dipping lithologic boundaries or schistosity. Three processes, 
which may have different relative importance depending on 
the local setting, are responsible for their formation: postglacial 
differential uplift (as shown by numerical modelling), gravita-
tional slope movements (as deduced from field observations) 
and tectonics (suggested to be a consequence of the tectonic 
setting). In the Swiss Alps, where uphill-facing scarps occur in 
formerly glaciated regions, differential uplift during deglacia-
tion triggered slip on the pre-existing weak zones. Consider-
able slip was accumulated by subsequent gravitational slope 
movements and, in some places, by tectonic displacement. 
Composite faults may be distinguished from tectonic faults 
by their orientation parallel to the valley axis and their large 
along-strike variations in displacement. In contrast to compos-
ite faults, tectonic faults usually can be traced across several 
valleys. Our results imply that attempts to decipher the current 
tectonic deformation pattern in an orogen must take into ac-
count that faults scarps may not always be of tectonic origin but 
that gravitational slope movements and postglacial differential 
uplift may have produced or modified the scarps.
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