
ABSTRACT

Compressional systems are usually characterized by a positive topography 
above the sea level, which is continuously modified by the conjugate effects of 
tectonic contraction or post-orogenic collapse, thermo-mechanical processes 
in the deep lithosphere and asthenosphere, but also by climate and other sur-
face processes influencing erosion rates.

Different types of sedimentary basins can develop in close association 
with orogens, either in the foreland or in the hinterland. Being progressively 
filled by erosional products of adjacent uplifted domains, these basins provide 

a continuous sedimentary record of surficial, crustal and lithospheric defor-
mation at and near plate boundaries.

Selected integrated basin-scale studies in the Circum-Mediterranean 
thrust belts and basins, in Pakistan and the Americas, are used here to docu-
ment the effects of structures inherited from former orogens, rifts and passive 
margins, active tectonics and mantle dynamics on the development and long 
term evolution of synorogenic basins.

Introduction

Flexure of the oceanic lithosphere as a response to the tec-
tonic loading by accretionary wedges and slab pull has been 
well described in the vicinity of active subduction zones (Karig 
1974; Karig & Sharman 1975; Leggett 1982; Watts et al. 1982; 
von Huene 1986; von Huene & Sholl 1991). Intra-oceanic flex-
ural moats developing as a response to the load of intraplate 
volcanoes have been carefully studied in Hawai (Watts et al. 
1980). An extensive literature deals with the significance of 
foreland flexural basins, which are known to develop on conti-
nental lithosphere as a response to the load of both collisional 
and Cordillera-type orogens. Thermo-mechanical controls, as-
sociated with the thermal state and layered composition of the 
lithosphere and accounting for spatial and temporal changes 
observed in the width and depth of foreland basins, have also 
been widely studied (Beaumont 1981; Royden & Karner 1984; 
Kusznir & Park 1984; Kusznir & Karner 1985; Kruse & Roy-
den 1987; 1994). Although most erosional products sourced 
by the orogens are likely to be trapped in adjacent foreland 
 basins, recording successively marine and continental sedimen-
tation, differential uplift and subsidence associated either with 
a negative inversion of former thrusts (post-orogenic collapse) 
or with the development of back-thrusts can also account for 

dominantly isolated, discontinuous depocenters in the hinter-
land. Ultimately, a part of synorogenic/synkinematic sediments 
does not reach the autochthonous foreland, being trapped in 
thrust-top or piggyback basins (Ori & Friend 1984; DeCelles 
& Giles 1996).

This study is focused on the control exerted on foreland ba-
sin evolution by pre-existing structures such as low-angle faults 
inherited from former orogens and high-angle faults inherited 
from the former rift architecture, as well as by lateral thickness 
and facies variations which are likely to occur in the post-rift 
sequences of former passive margins.

We will describe how active tectonics can induce the devel-
opment of thrust-top and hinterland basins, and how post-oro-
genic mantle dynamics can impact the uplift and erosional his-
tory of the orogen itself, but also of adjacent foreland basins.

1 Lithological controls of passive margin series on the 
localization of decollement levels

Whereas the North American Cordillera and especially the 
Canadian Rocky Mountains show little evidence of major lat-
eral thickness and facies variations in the pre-orogenic series, 
the current architecture of Circum-Mediterranean and Alpine 
foothills is dominantly controlled by the Tethyan rifting which 
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operated in Triassic and Liassic times (Bernoulli & Lemoine 
1980; Bernoulli 1981; Lemoine et al. 1981, 2000).

For instance, the occurrence or lack of Triassic salt have a 
strong influence on the development of transfer zones in the 
Jura Mountains and Sub-Alpine Chains (Guéllec et al. 1990; 
Philippe 1994; Philippe et al. 1996).

The marked contrasts in structural style among Mediter-
ranean and Alpine thrust belts derived from the deformation 
of former passive margins of the Tethys are clearly related to 
the distribution of Cretaceous platform to basin transitions, as 
well as passive margins versus continental series. Seemingly, 
Mexican cordilleras such as the Zongolica and Sierra Madre 
thrust belts are also derived from the reactivation of Jurassic 
rift margins with wide Cretaceous prograding platforms, and 
share many similarities with Tethyan thrust belts from the other 
side of the Central Atlantic (Ortuño et al. 2003).

1.1 Architecture of platform to basin transitions in Albania

The Ionian Basin in Southern Albania is made up of domi-
nantly Mesozoic thin-skinned tectonic units which have been 
detached from the infra-Triassic substratum along the basal 
Triassic salt. These thrust units involve relatively thin (about 
1 km-thick) Mesozoic series of basinal affinities. Each unit is 
made up of Toarcian blackshales, Middle Jurassic cherts, Late 
Cretaceous carbonate turbidites and Eocene Scaglia-type fine-
grained pelagic limestones, which are overlain by Oligocene si-
liciclastic synflexural series (Roure et al. 1995; 2004; Carminati 
et al. 2004). Farther north, these Mesozoic basinal series still 
belong to the autochthon in the Peri-Adriatic Depression, the 
main décollement of the northern Albanian foothills being lo-
cated within Cenozoic series.

Up to 2 to 3 km-thick prograding Cretaceous platforms 
were built on both sides of the Mesozoic Ionian-Adriatic ba-
sin, accounting for the shallow water carbonate facies of the 
Sazani-pre-Apulian Platform domain in the west, and of the 
Kruja zone in the east (Roure et al. 1995; 2004).

Due to rheology contrasts between the massive platform 
carbonates and finely layered basinal series, but also between 
Mesozoic carbonates and siliciclastic Oligocene flysch, triangle 
zones have developed along these paleogeographic boundar-
ies, accounting in both cases for the development of a regional 
backthrust and deeply buried duplexes (Fig. 1a, b).

In the northern transect (Fig. 1a), the Kruja units, made up 
of Cretaceous platform carbonates and Oligocene flysch, have 
been thrust over the siliciclastic series of the Peri-Adriatic De-
pression during a pre-Messinian thrusting episode. Subsequent 
deformation during the Pliocene involved the tectonic accre-
tion of deeper platform duplexes, deformation propagating 
forelandward along a blind thrust, antithetic from a shallower 
east-verging backthrust.

In the southern transects (Fig. 1b), the foreland propaga-
tion of the frontal thrust is only visible in the northwestern side 
of the Sazani promontory (section 1), whereas farther south, 
it accounts for a west-verging blind thrust, propagating in the 

opposite direction from a shallower east-verging conjugate 
backthrust.

Both areas are yet underexplored, although they are likely to 
host hydrocarbon reserves in slope breccias near the transition 
between the Kruja and Sazani platform domains (known for their 
good reservoirs) and the Ionian and Peri-Adriatic basins (likely 
to have a good source rock potential; Roure et al. 1995, 2004).

1.2 The architecture of platforms to basin transitions in the 
French Alpine foreland

In southeastern France, triangle zones have also developed along 
the northern border of the Provençal Platform, accounting for the 
large backthrusts of the La Lance and Ventoux-Lure carbonate 
platforms, which are made up of Urgonian reefal facies and are 
widely thrust over coeval basinal facies of the Vocontian Trough 
(Roure et al. 1992, 1994a; Roure & Colletta 1996; Fig. 2).

La Lance structure

The deep architecture of the La Lance structure is related to the 
reactivation of a former Liassic basement-involving high-angle 
fault. A basal décollement is located in the Triassic salt series 
in the Vocontian Basin in the north, but in Jurassic blackshales 
in the south. A basement short-cut is evidenced at depth, with 
a south-verging reverse fault transporting passively the crest 
of the former Jurassic tilted-block (Fig. 2a). A blind antithetic 
north-verging backthrust has detached the Urgonian (Aptian) 
platform series, connecting the intra-Jurassic décollement in 
the south with a shallower décollement in the north, which 
propagated within the Lower Cretaceous basinal series of the 
Vocontian domain as far north as the Saou syncline.

Lateral thickness and facies variations of the Barremian-
Aptian series can be clearly recognised on the seismic profiles, 
where the transition between thick prograding Urgonian series 
and thinner, isopachous basinal sequences can be picked very 
accurately.

Actually, regional-scale basinal inversion is also evidenced 
by the current position of the top Jurassic horizon, which is 
higher within the currently inverted basinal domain in the 
north, than in the ajdacent paleo-horst where Urgonian car-
bonates have been deposited in the south.

Although the seismic profile crossing the La Lance struc-
ture is of average quality at depth, the overall architecture of 
this structure fits quite well with the geometry expected for 
such localization of thin-skinned tectonics and wedging, associ-
ated with the reactivation of a deeper basement-involving fault, 
as predicted by analogue models (Fig. 2b).

The Ventoux-Lure structure

The Ventoux-Lure is a west-trending platformal unit which 
constitutes the eastern prolongation of the La Lance thrust 
sheet. As the latter, it is thrust northward over coeval basinal 
facies of the Vocontian Basin (Fig. 2). Although the surface ar-
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Fig. 1. Thin-skinned deformations associated with Mesozoic platform to basin transitions in Albania: a) Kruja duplexes and associated backthrust developing at 
the transition between the Kruja-Gavrovo Platform and the Ionian-Peri-Adriatic Basin; b) Serial sections in the Vlora area, outlining the lateral changes in thrust 
architecture at the transition between the Sazani-Pre-Apulian Platform and the Ionian Basin, with a progressive stacking of Ionian duplexes and development of 
a triangle zone. The Sazani units are made up of Mezozoic platform carbonates (2) and Neogene siliciclastic series (2). The Ionian units are detached along the 
Triassic salt (1), and comprise Jurassic (2) and Cretaceous (3) to Eocene basinal series, overlain by Oligocene turbidites (4) and Neogene clastics (5).
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Fig. 2. Thin-skinned deformations associated with Mesozoic platform to basin transition in the French Alpine foreland basin: Basement short-cut and antithetic 
thin-skinned thrusts in the La Lance structure (French Alpine foreland basin). Top: Seismic profile across the La Lance anticline; Bottom: Sand box experiment 
outlining the development of a basement short-cut and passive transport of former normal fault during the transpressional inversion of a pre-existing graben.
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chitecture of the Ventoux-Lure backthrust is very similar and 
more or less continuous with the one of the La Lance unit, a 
debate still remains for its deeper controls. Reprocessing of 
seismic profiles could not demonstrate the occurrence of high-
angle normal faults in the basement, leaving open alternative 
hypotheses whereby the triangle zone is only controlled by 
the lateral motion and wedging of basinal series beneath the 
Cretaceous platform, the Jurassic mud pile acting as a smooth 
indenter which progressively opened the mouth of the “croco-
dile” (Meissner 1989; Ford & Stahel 1995).

1.3 The architecture of platform to basin transitions in the 
Zongolica thrustbelt

In Southern Mexico, the Cordoba Platform constitutes the east-
ernmost tectonic units of the Zongolica thrustbelt. It is made up 
of 2 to 3 km-thick Lower Cretaceous shallow-water carbonates, 
which have been thrust eastward during the Late Cretaceous-
Paleocene Cordilleran orogeny over coeval basinal sequences 
of the Veracruz Basin (Ortuño et al. 2003; Ferket et al. 2004).

As in Albania, numerous duplexes made up of Mesozoic 
carbonates have been stacked at the platform to basin transi-
tion, and constitute the main oil-productive structures in these 
areas (Fig. 3).

Worth to mention, slope breccias account here for the best 
reservoirs, whereas the main source rocks are likely to be found 
in the adjacent basinal series.
Lateral shifts in décollement layers between dominantly brittle 
platform domains and adjacent basins are the main parameter 
accounting for the deformation style and development of such 
triangle zones. Platform horses override poorly deformed ba-
sinal sequences when the deformation migrates from the plat-
form towards the basinal domain (case of the Albanian/Kruja 
and Mexican examples), whereas an antiformal stack of basinal 
duplexes develop in the footwall of a major backthrust of the 
platform domain when the deformation front migrates from 
the basin toward the platform (case of the Albanian/Sazani/Io-
nian and La-Lance/Ventoux examples). All these transitional 
domains between former platforms and basins constitute major 
objectives for petroleum exploration, as they display excellent 
structural closures with good reservoirs, likely to be charged by 
oil generated in the adjacent basinal domains.

2 Basement architecture and foreland inversions

As already discussed in the case of the La Lance structure, the 
crustal architecture inherited from the rifting episodes exerted 
a strong control in localizing subsequent thin-skinned deforma-
tions:

2.1 Infra-salt basement controls and late-stage inversion 
beneath the Jura Mountains and Salt Range-Potwar Basin

The Ecors deep seismic profile and exploration wells in the 
Molasse Basin and Jura Mountains have evidenced the occur-

rence of Carboniferous basins beneath the basal, intra-Triassic 
décollement (Laubscher 1986; Guéllec et al. 1990; Philippe et 
al. 1996). Seismic imagery documents the late stage inversion of 
these basins, which post-dates the main Messinian-Pontian epi-
sode of westward lateral displacement of the Mesozoic cover 
toward the Bresse Graben. Therefore, the current topography 
of the High Jura (Grand Credo; Guéllec et al. 1990; Philippe 
1994; Philippe et al. 1996; Fig. 4) cannot be only interpreted as 
the result of thin-skinned stacking, but in part is accounted for 
by vertical Plio-Quaternary uplift associated with basement in-
version.

In Pakistan, timing of the Salt Range emplacement was er-
roneously attributed to the same Plio-Quaternary episode of 
deformation which is well documented by magneto-stratigra-
phy in the Siwalik molasse deposits of the Potwar Basin (Bur-
bank et al. 1986, 1988). However, the Salt Range is devoid of 
Neogene series, and is known to rest directly on top of Miocene 
stata, with no Pliocene evidenced in the lower plate. Worth to 
mention also, Infracambrian and Paleocene blackshales of the 
Salt Range are still thermally immature, which means they 
were never buried deeply beneath the Siwalik series, as should 
be expected if thrusting operated only during the Plio-Quater-
nary (Grelaud et al. 2002).

In fact, there are many features on seismic profiles to dem-
onstrate that the base of the Infra-Cambrian salt is not flat 
beneath the Potwar Basin, but is locally offset by high-angle 
faults operating in the infra-salt substratum. Most (if not all) 
outcropping anticlines of the Potwar Basin are indeed under-
lain by reactivated basement faults, providing strong support 
for another interpretation and timing of the deformation than 
the one proposed earlier (Jaswal et al. 2004; Fig. 5):

– Between 10 and 20 km of shortening have been accom-
modated by the southward thin-skinned translation of the 
sedimentary cover of the Potwar Basin, most of this motion 
being Miocene in age, i.e., synchronous with the deposition 
of the Siwalik molasse. The Salt Range thrust front was 
continuously uplifted and eroded during this stage, account-
ing for the low maturity of its source rocks (Grelaud et al. 
2002).

– During the Plio-Quaternary, paleostress directions have 
been slightly modified, inducing the transpressional reac-
tivation of east-trending faults in the infra-salt substratum. 
Shallow anticlines in the Potwar Basins are related to local 
in-situ thin-skinned accommodation features (fish tails and 
pop-up structures) which are directly controlled by the un-
derlying ongoing basement inversion. Alternatively, lateral 
thickness variations of the salt pillows could also account 
for a subsequent localisation of the deformation, even in 
areas where no basement normal fault can be identified in 
the seismic profiles.

– Further evidence of this late stage transpressional event 
is recorded in recent outcrops provided by the new Islam-
abad-Lahore highway, at the crossing with the Hari-Murat 
thrust. Slicken-sides on the major thrust plane are indeed 
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almost horizontal, thus attesting for the late-stage, domi-
nantly strike-slip motion along these former south-verging 
thrust contacts.

2.2 What is controlling the development of lateral ramps?

Scaled analogue models of thrust deformation have docu-
mented the influence of brittle-ductile coupling and thickness 
variations of décollement layers on the location of the active 
thrusts (Smit et al. 2003). Seismic profiles across lateral ramps 
and transfer zones do not differ too much from profiles cross-
ing the frontal structures, although they accommodate a lot of 
“out-of-the-plane” motion. In Albania and in Eastern Venezu-
ela, they provide a key for better understanding the deep con-
trols accounting for the localization of the deformation along 
two well known transfer zones, namely the Vlora-Elbasan lin-
eament and the Urica Fault:

Vlora-Elbasan lateral ramp (Albania)

The Vlora-Elbasan transfer fault constitutes a southwest-trend-
ing tectonic feature which separates the inverted Ionian Basin 
in the south from the Peri-Adriatic Depression in the north. It 
is related to a major lateral shift in the depth of the basal décol-
lement, which is localized within the Triassic salt and evaporites 
in the south beneath the Ionian Basin, but ramps upward into 
the Oligocene and Neogene clastics of the flexural sequence 
further north beneath the Peri-Adriatic Depression (Roure et 
al. 1995, 2004).

Two different hypotheses have been proposed to account 
for this localization of the deformation (Fig. 6):

1) either the Vlora-Elbasan structure is located along a major 
paleogeographic facies boundary, accounting for the lack of 
Triassic salt in the north, the base of the Triassic remaining 
flat beneath the ramp;

2) or the main control is exerted by a high-angle fault in the 
basement, accounting for a vertical offset of the base of the 
Triassic series.

The latter explanation involving a southwest-trending fault 
may eventually be validated by depth migrating the time sec-
tions crossing the transfer zone. At this stage, an apparent anti-
formal deformation can be noticed below the basal intra-Trias-
sic décollement, but there is not enough control on seismic ve-
locities at depth yet to perform a confident depth migration of 
the lines. If still preserved after depth migration, this infra-salt 
doming would rather account for the reactivation of basement 
structures or inversion of a Paleozoic basin. Unfortunately, the 
resolution of potential data such as gravimetry is not sufficient 
to discriminate among the various hypotheses, due to the high 
density of shallow carbonates, and no deep seismic is yet avail-
able to document the presence or absence of an infra-salt ba-
sin.

Seismic profiles across the lineament account for a major 
change in the structural style, with a basal decollement located 
in the Triassic salt in the southeast, and in the Oligo-Miocene 
siliciclastics in the northwest. At intermediate depth (i.e. be-

Fig. 6. The Vlora-Elbasan lineament in Albania: a lateral ramp connecting intra-Triassic and Cenozoic décollement levels.
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tween 4 and 8 km), the Vlora-Elbasan structure is best de-
scribed as a lateral ramp). Deeper controls are still conjectural, 
being either related to a lateral change in the Triassic facies, or 
to a pre-existing Mesozoic or Paleozoic high-angle fault. The 
slight deformation observed at the base of Triassic series in the 
eastern part of the section could either be related to a velocity 
pull-up (underestimation of the seismic velocities during time-
to-depth conversion of the section), or indicate inversion of a 
Paleozoic graben.

Urica lateral ramp (Eastern Venezuela)

The Urica Fault is a southeast-trending tectonic feature which 
constitutes the western border of the Serrania. At the surface, 
it is connected laterally with the regional north-verging back-
thrust of the main Eastern Venezuelan tectonic front. East-
trending seismic profiles across the Urica zone help constrain-
ing its architecture at depth (Roure et al. 1994b; Fig. 7):

– To the east, the basal décollement beneath the Serrania is 
located in the Mesozoic series of the former passive margin, 
i.e., in Lower Cretaceous coal measures of the Barranquin 
Formation or in even deeper synrift Jurassic (?) series;

– To the west, the basal décollement is shallower, being lo-
cated in the synflexural siliciclastic series of the Carapita 
Formation;

– The surface trace of the Urica Fault is related to an east-
verging thin-skinned backthrust which roots within the in-
tra-Carapita décollement;

– The deep control of the Urica trend consists in a south-
southeast-trending high-angle normal fault which crosses 
the Mesozoic series and the basement. Although it guides 
the Late Miocene to Pliocene tectonic inversion of the Ser-
rania, this fault still preserves its normal offset at basement 

level. This deep Urica fault was inherited from the Meso-
zoic rifting and accounts for an abrupt thickening of the 
Mesozoic series toward the northeast.

Figure 7 shows the rapid thickening of the Mesozoic rift se-
quence in the footwall of the thin-skinned detachment. At 
shallower level, the surface expression of this structure consists 
in a regional backthrust, whereas at deeper level, it is related 
to the reactivation and inversion of a Mesozoic high-angle 
fault system. The main Mesozoic depocenter is now inverted 
and dissected into numerous thrust sheets which account for a 
number of productive east-trending ramp anticlines at and near 
the main deformational front (i.e., the El Furial and Orocual 
trends), which are still deeply buried beneath the Neogene 
synorogenic series, and for the Serrania topography.

2.3 Inversion processes in Western Venezuela: From intra-plate 
basement short-cuts to foreland basement uplifts

Western Venezuela and Colombia are characterized by the oc-
currence of a Jurassic rifting episode which accounts for the 
development of north- and northeast-trending normal faults 
associated with Jurassic grabens. Outcrops in the Merida Andes 
and Sierra de Perija in Venezuela, and in the Eastern Cordil-
lera of Colombia, help to study the Jurassic synrift sequences, 
which are dominantly made up of continental red beds and 
volcanics of the La Quinta Formation. The same series were 
also identified from subsurface drilling in the Maracaibo Basin, 
where industry seismic profiles helped to better understand the 
successive steps of basin inversion, from almost undeformed 
grabens still located at 2 or 3 km below the sea level along the 
western side of the Maracaibo Lake (Colletta et al. 1997; Roure 
et al. 1997; Fig. 8), up to the area of major foreland basement 
uplifts such as the Merida Andes and Eastern Cordillera, where 

Fig. 7. The Urica transfer zone in Eastern Venezuela: a lateral ramp connecting Lower Cretaceous and intra-Miocene décollement levels (modified after Roure 
et al. 1994).
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Fig. 8. Structural sections across the Maracaibo Basin (Venezuela), outlining the role of Jurassic normal faults in the localisation of Laramian and Andean inver-
sion features (modified after Roure et al. 1997): a) Location map; b) Synthetic and contracted section across the Maracaibo Lake, outlining the distribution of 
the main Jurassic depocenters; c) 3D block diagram outlining the basement short-cut and fish-tails associated with the transpressional reactivation of the Icotea 
trend; d) Seismic profile across the Icotea trend, outlining a basement short-cut and passive transport of the pre-existing Jurassic normal fault. e) Profile across 
the Urdaneta Jurassic half-graben, outlining a slighter inversion. 
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the Jurassic series are now exposed at more than 2 or 3 km of 
elevation (Fig. 9).

Because paleostress directions changed with time (Freymül-
ler & Kellogg 1993; Freymüller et al. 1993), from a dominantly 
north-south maximum principal stress during the Caribbean/
Laramian deformation episodes (Late Cretaceous to Eocene), 
to a rather northwest-southeast attitude of the main horizontal 
stress during the Late Miocene-Pliocene Andean deformation, 
Jurassic normal faults of the Maracaibo Lake have been reacti-
vated successively as right-lateral or left-lateral transpressional 
features, with also a few episodes of transtension.

Limited inversion occurred along the Urdaneta trend in the 
south of the Lake, where Jurassic grabens are still overlain by 
flat Albian and younger post-rift and synflexural series.

Farther north, incipient inversion accounts for the folding 
of the Albian unconformity, with zero displacement at the tip 
of the underlying Jurassic border fault (Fig. 8c).

In contrast, oblique inversion becomes the dominant struc-
tural style along the Icotea trend, in the north-central part 
of the Lake, where it accounts for localized basement highs. 
Careful analysis of seismic profiles shows that the main Juras-
sic normal fault has been passively uplifted but still preserves 
its normal offset along the eastern border of the Icotea High, 
whereas the western border of this anomalous topography is 
related to a west-verging late-stage reverse fault accounting for 
a basement short-cut (Fig. 8d).

East-west horizontal shortening is very limited in the area 
of Maracaibo Lake. Most thin-skinned tectonic structures are 
localized in the vicinity of the basement-involving inversion 
features and are related to transpression, with the occurrence 
of numerous fish tails and other local accommodation features 
induced by a mechanical decoupling between the rigid base-
ment and more plastic sedimentary cover (Roure et al. 1997).
Larger shortening accounts for the major foreland uplifts of 
the Merida Andes and Eastern Cordillera, which will be further 
discussed in Chapter 4.

3 Thrust-top basins as a mirror of sub-thrust tectonic accretion

Piggyback or thrust-top basins developing on top of the mobile 
allochthonous edifice have been identified first in the Apen-
nines a long time ago (Ori & Friend 1984; Casero et al. 1991). 
They are also well documented in Sicily (Caltanissetta Basin; 
Roure et al. 1990b), as well as in Eastern Venezuela (Morichito 
Basin; Roure et al. 1994b) and in many other thrust belts where 
depocenters have developed at the rear of frontal anticlines, 
being either isolated or still in direct connection with coeval 
sediments infilling the adjacent foreland basin.

Although they commonly display contrasting lithofacies, 
usually shallow marine or continental, making direct chrono-
stratigraphic correlations with the deeper-water foredeep sedi-
ments a bit challenging, their basal and successive internal un-
conformities usually provide unique constraints to document 
the timing of tectonic accretion. Progressive tilting of these im-
bricated unconformities and coeval lateral shifts of piggyback 

depocenters can be used also as additional templates to guide 
the geologist when addressing forward kinematic modelling 
and editing intermediate geometries between the present and 
pre-orogenic configurations:

– In the southern Apennines, subthrust accretion of deeply 
buried Mesozoic platformal duplexes beneath the basinal 
Lago-Negro nappes and Neogene clastics of the Bradano 
Trough accounts for the development of nappe anticlines, 
tectonic windows and klippen, which result from the refold-
ing of former thrusts and coeval erosion (Fig. 10; Roure et 
al. 1990a, 1991). Piggyback basins can also develop above 
flat segments of the sole thrust, in the core of overlying 
nappe synclines, and help to decipher whether tectonic ac-
cretion operates farther east at the thrust front, or farther 
west, by underplating of deeply buried duplexes (Fig. 10, 
bottom; Hippolyte et al. 1991, 1994; Roure et al. 1991).

– Pleistocene piggyback depocenters observed along a fa-
mous seismic transect published by Pieri and Bally in the 
Northern Apennines (Pieri 1983; Fig. 11a) provide also 
evidence for post-Pliocene and still ongoing deformation 
along the basal décollement, which is located at more than 
10 km depth in this portion of the Apennines (Scrocca et al. 
2007). Along this transect, Pliocene and older outcrops are 
located in wide regional antiforms that developed above 
the ramps of the deeper, still active décollement, whereas 
Pleistocene depocenters are found above its flat segments 
(Fig. 11b). In this case, the lithospheric flexure also had a 
direct control on the subsidence pattern of the foothills, as 
evidenced by forward kinematic simulations (Zoetemeijer 
et al. 1992, 1993):

Tectonic accretion above a flat décollement surface would 
rather generate uplift and erosion in the hinterland, in an area 
where the main Pleistocene depocenter is located, thus imply-
ing that thrusting operated synchronously with ongoing flex-
ural subsidence of the underthrust foreland lithosphere.

4 The development of hinterland basins: a combination of 
strain partitioning, strike-slip faulting and thrust reactivation

Collisional orogens like the Alps and the Pyrenees and Ameri-
can cordilleras like the Andes and Rocky Mountains do share 
a number of surficial similarities, although their driving mecha-
nisms are quite distinct at a deeper level, with the juxtaposition 
of two continental lithospheres in the Alps and the Pyrenees, vs. 
complex interplays between the American continents and the 
subduction of the Pacific Ocean in the Andes and the North 
American Cordillera:

– In these two contrasting types of orogens, oblique conver-
gence accounts for strain partitioning, most of the oblique 
component being frequently absorbed along active strike-
slip faults which run parallel to the plate boundary (Che-
menda et al. 2000; Martinez et al. 2002; Lingrey 2007). This is 
the case for instance with the Periadriactic Line in the Alps 
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(Schmid et al. 2004) and the North Pyrenean Fault in the 
Pyrenees. The indentation and eastward escape of the in-
tra-Carpathian blocks account also for the post-collisional 
Miocene strike-slip dismembering of the former Pieniny 
Klippen Belt (Sauer et al. 1992). Strain-partitioning in ar-
eas of oblique convergence accounts also for the northward 
escape of the Salinian block west of the San Andreas Fault 
in California, for the southward motion of the Maracaibo 
indenter west of the Bocono Fault in the Merida (Venezue-
lan) Andes, and the eastward escape of the Carribean plate 
north of the El Pilar fault in Eastern Venezuela (Freymüller 
& Kellogg 1993; Freymüller et al. 1993). Due to partition-
ing, transport direction remains dominantly perpendicular 
to the thrust anticlines in the foothills.

– Overthickened crust of the Alps, other Tethyan/Mediterra-
nean orogens and the American Cordilleras was affected by 
a ductile flow of the lower crust, associated with well-docu-
mented post-orogenic collapse and orogen parallel exten-
sion in the Basin and Range (Wernicke 1981), as well as in 
the Betic and Rif orogens and the intervening Alboran Sea 

(Dewey 1988). Although aternative hypotheses involving 
a roll-back of the subduction and coeval back-arc opening 
have been proposed for the Pannonian Basin, the Aegean 
and Tyrrhenian domains, where no former high mountain 
plateau could account for a post-orogenic gravitational 
collapse, these areas display also evidence of reactivation 
of former thrust faults as low-angle normal faults. Nega-
tive inversion is effectively obvious at various scales within 
these three intra-arc systems, i.e. in Hungary (Horvath 
1993; Peresson & Decker 1997; Tari et al. 1999; Horvath et 
al. 2006), in the Cycladic Islands and the Apennines (Bally 
et al. 1988; Ghisetti et al. 1993; Brun et al. 1994; Jolivet et al. 
1994, 1998; Ghisetti & Vezzani 2002).

Paleomagnetic and microtectonic studies performed in the 
Southern Apennines and adjacent Bradadano and Puglia fore-
land (Hippolyte et al. 1991, 1994) could identify periods of 
strong coupling between the allochthon and the foreland, i.e., 
paleostress directions being then similar on both sides of the 
thrust front, separated by time intervals when a complete de-

Fig. 11. Structural section across the Northern Apennines, outlining synkinematic Pliocene and Quaternary deposits, and ongoing displacement along the basal 
décollement (seismic profile from Pieri 1983): Top: Stratigraphic calibration of shallow horizons made by Pieri and Bally (in Pieri 1983). Black arrow and frame 
show progressive onlaps of growth stata on Pliocene anticlines. Bottom: Deep interpretation outlining the diachronous activation of an early intra-Miocene de-
collement level (pink, mainly active during the Lower and Middle Pliocene), and a deeper, younger intra-Triassic basal detachment (red, mainly Upper Pliocene 
but still active during the Quaternary).
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coupling between the thrust belt and the autochthon prevailed, 
with very distinct paleostress directions.

Various parameters such as pore-fluid pressure in poten-
tial décollement levels and thermomechanical behaviour of the 
lower crust and sub-continental mantle probably control the 
coupling or decoupling between the orogen and its foreland, 
foreland inversions developing when all the tectonic stress 
propagates forelandward from the plate boundary during peri-
ods of strong coupling (Ziegler et al. 1998, 2002).

These successive changes in coupling and decoupling between 
the hinterland and the foreland, associated with deeper con-
trols exerted by the structural grain of the crust (i.e., occurrence 
of pre-existing weakness and inherited structures in the crust), 
or with the negative inversion of former thrusts, are the main 
processes accounting for the localisation and development of 
hinterland basins:

4.1 Post-orogenic collapse and negative inversion  
of former thrusts

The negative, extensional inversion of former reverse faults 
is a common phenomenon in the hinterland of most orogens, 
where it accounts for the development of syn-extensional de-
pocenters, i.e. in the Basin and Range province of the USA 
(Wernicke 1981), in the hinterland of the Canadian Rocky 
Mountains (Price 1986), in the Betic Cordillera and Alboran 
Sea (Dewey 1988), and the Tyrrhenian side of the Apennines 
(Jolivet et al. 1994, 1998). Additionally, localisation of the de-
formation along former orogenic structures has been envi-
sioned or even demonstrated in many rift systems and passive 
margins, i.e. for the Jurassic basins of northern Colombia and 
western Venezuela, for various segments of the East African 
Rift, but also for the northwestern margins of the Atlantic 
Ocean and Gulf of Mexico, which were prone to reactivate 
former thrusts of the Appalachians and Ouachita Paleozoic 
orogens (Ando et al. 1983; Hatcher et al. 1989), as well as for 
the Caledonides in Scandinavia and off England (Séguret et 
al. 1989; Séranne et al. 1989, 1995; Séguret & Benedicto 1999; 
Séranne 1999).

In France, negative hinterland inversion associated with syn-
extensional basin development has been well documented lo-
cally:

– In the Aquitaine Basin, the North Pyrenean deep seismic 
Ecors profile has evidenced the development of Permian 
grabens above reactivated Hercynian thrusts (Choukroune 
et al. 1990; Roure et al. 1996). Although there is no seis-
mic profile yet available, the same process could probably 
account for many other post-Hercynian European basins, 
such as the Permian Lodève Basin in the vicinity of the 
Montagne Noire, where post-orogenic collapse has been 
well documented on the basis of microtectonic and petro-
fabric data (Faure & Becq-Giraudon 1993; Becq-Giraudon 
& van den Driessche 1994; Burg et al. 1994).

– In Languedoc, Oligocene extension associated with the 
opening of the Gulf of Lion and Western Mediterranean 
is known to have locally reactivated Pyrenean thrusts in 
the St-Chinian Arc and Montpellier fold (Benedicto 1996; 
Benedicto et al. 1996; Séguret & Benedicto 1999), thus ac-
counting for the development of the Quarante Basin and 
adjacent roll-over regionally know as the La-Clappe anti-
cline (Roure et al. 1988; Fig. 12).

4.2 Thrust-top pull-apart basins

The Vienna Basin is probably the most famous and archetype 
of thrust-top pull-apart basins, developing above the Alpine 
allochthon after its thrust emplacement, in connection with 
lateral eastward block escape along the Carpathian arc (Roy-
den 1985; Sauer et al. 1992; Seifert 1996; Decker & Peresson 
1996).

Other pull-apart basins have developed in the hinterland of 
Circum-Mediterranean thrust belts, i.e. in the Apennines and in 
North Algeria, as a result of local and temporal changes in the 
paleostress regimes, and in relation to strain partitioning.

The physiography and lozenge shape of the Chelif Basin in 
North Algeria is well identified on geological maps and landsat 
imagery (Fig. 13). This basin is located north of the Tellian thrust 
front, which reached its current position during the Langhian 
(Frizon de Lamotte et al. 2000; Roca et al. 2004; Benaouali et al. 
2006). It is adjacent to a major east-trending lineament, known 
as the “Dorsale Calcaire”, which separates the Kabylides crys-
talline basement in the north from the Tellian nappes in the 
south, and most likely behaved as a major strike-slip fault dur-
ing the development of the Chelif Basin.

The Neogene sedimentary infill of the Chelif Basin com-
prises Burdigalian to Langhian synkinematic series, which 
were deposited in a piggyback position at the same time as the 
main southward thrust emplacement of the Tellian nappes, at 
a time when oblique convergence, transpression and strain-
partitioning affected the plate boundary. These basal deposits 
were overlain by post-nappe Tortonian to Pliocene depocen-
ters, which are spatially limited and controlled by active normal 
faults. These normal faults, locally exposed at the surface, can 
be also traced down to the deepest part of the basin on seis-
mic profiles and are indicative of an Upper Miocene-Pliocene 
episode of transtension along the North African plate bound-
ary. These faults are oblique (en échelon) with respect to the 
Dorsale Calcaire lineament. In a similar way as the El Pilar 
Fault in northern South America, the Dorsale Calcaire linea-
ment accommodated the lateral shift of the Kabylides with re-
spect to the Tell allochthon and underlying underthrust African 
foreland during a Tortonian to Pliocene post-nappes episode of 
transtension.

Plio-Quaternary inversion of these depocenters accounts 
for renewed transpression along the plate boundary, with fold-
ing and erosion of Pliocene series in the vicinity of the major 
border faults of the Chélif Basin.
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4.3 Intra-crustal backthrusts and development  
of intramontane basins

Analogue models accounting for the flow of the ductile lower 
part of an overthickened continental crust have been proposed 
to account for the development of pop-down intramontane ba-
sins such as the Magdalena Basin in Colombia (Davy & Cob-
bold 1991), where thick and dominantly continental Neogene 
deposits have been trapped between the growing topographies 
of the Central and Eastern Cordilleras.

Industry seismic profiles across the Llanos foothills, Garzon 
Massif and Middle Magdalena Basin help to constrain regional 
balanced cross-sections and to propose new interpretations for 
the crustal structure of this transect, whereby the regional west-
verging backthrust of the Garzon Massif connects at depth with 
former Paleozoic east-verging thrusts (Fig. 14; Roure et al. 2003, 
2005a; Toro et al. 2004; Sassi et al. 2007).

Occurrence of Paleozoic thrusts in the Llanos foreland has 
also been recognized farther north in the Barinas Basin in Ven-
ezuela (Fig. 14b). It is likely that this inherited structural grain 
of the South American foreland accounted for both the locali-
sation of the Jurassic rifting (Fig. 9), and subsequent Andean 
foreland basement uplifts.

As such, the present day location of the Maracaibo Basin is 
very similar to the one of the Magdalena Basin. Although the 
Maracaibo area is mostly interpreted as a distinct microplate, it 
could also be adequately considered as an intramontane basin, 
which became isolated from the main Llanos foreland basin in 
the east due to the intervening Neogene basement uplift of the 
Merida Andes.

5 Mantle dynamics and post-orogenic uplift of foreland basins

5.1 Post-orogenic uplift and erosion of foreland basins

Many foreland basins are no longer close to the sea level, but 
have experienced uplift and erosion since the end of the main 
compressional/tectonic loading episodes (Fig. 15):

– In North Algeria, Langhian deep-water turbidites depos-
ited near Tiaret in the foreland autochthon, immediately 
south of the Tellian thrust front, are presently located at an 
elevation of 1 km above sea level (Roca et al. 2004).

– In the Alberta Basin in Canada, up to 3 km of synflexural 
sediments were removed by erosion since the end of the 
Laramian/Cordilleran deformation, i.e. from Eocene on-
ward (Faure et al. 2004; Hardebol et al. 2007). Worth to 
mention, the city of Calgary itself, which is located in the 
foreland autochthon, about 100 km east of the thrust front, 
currently displays an average elevation of 1 km above sea 
level, which is quite surprising for an ancient foredeep basin 
(Price & Fermor 1985; Price 1994; Fig. 15a).

– The same type of post-orogenic uplift and erosion of former 
flexural sequences occurred also along the western margin 
of the Gulf of Mexico, i.e. in the foothills of the Sierra Madre 
Oriental and adjacent coastal plain, which is actually super-
imposed on the former Cordilleran foreland basin. Up to 
4 km of post-Laramian erosion is thus recorded in the Bur-
gos Basin in the north, and about 2 to 3 km farther south 
in the Chicontepec Basin and in the Cordoba Platform in 
the Veracruz State (Fig. 15b) (Gray et al. 2001; Roure et al. 
2008).

In Mexico, these post-orogenic uplift and unroofing processes 
have completely changed the former attitude of the basement, 
which is currently dipping toward the east beneath and in front 
of the Cordoba Platform, whereas it was dipping westward at 
the time of foreland basin development. Late Cretaceous to 
Paleocene turbidites and gravity slides infilling the former Chi-
contepec flexural basin currently display apparent downlaps 
toward the Faja de Oro or Golden Lane, whereas they were 
initially deposited as onlapping sequences, prior to post-oro-
genic tilting and unflexing of the foreland basement (Alzaga 
et al. 2007a, b).

Erosional products derived from the Sierra Madre itself, but 
also from post-Laramian uplift and unroofing of the adjacent 
foreland, account for a huge Oligocene to Neogene siliciclas-

Fig. 13. Landsat image of Northern Algeria, out-
lining the distribution of thrust-top pull-apart 
depocenters of the Chelif Basin associated with 
a major east-trending lineament (Dorsale Cal-
caire), between the Tellian thrust front in the 
south and the Kabylides-Western Mediterranean 
plate in the north.

Atlas foreland

Chelif
basin

Tellian front

Chelif
basin

Atlas foreland
Tellian front

Kabylides
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tic sedimentary influx into the Gulf of Mexico, resulting in the 
building of overpressures in underlying Eocene shales and to 
the gravitational collapse of the margin (Alzaga et al. 2007a, b). 
Post-orogenic erosional products derived from the uplift of the 
Alberta foreland basin, which is devoid of any post-Cretaceous 
series, have also been certainly transferred either to the north 
into the Arctic, or to the south into the Gulf of Mexico, depend-
ing on the actual position of the continental divide between the 
Mississippi and Arctic basins during the Eocene and younger 
periods.

Apart from this Cordilleran example, where vertical mo-
tion is controlled by an astenospheric rise, post-orogenic up-
lift and erosion are also common processes in other orogens 
such as the Alps, the Carpathians, the Apennines-Maghre-
bides-Betics system, as well as in the Brooks Ranges, among 
others. Unlike in the Cordillera, where the subduction of the 
Pacific Ocean lithosphere beneath the orogen never stopped, 
alternative hypotheses involving a slab detachment, as de-
scribed below, have been proposed to account for the recent 
vertical motion recorded in most Circum-Mediterranean and 
Alpine orogens (Wortel & Spakman 1992, 2000; van der Meu-
len et al. 1998; Frizon de Lamotte et al. 2000; Roca et al. 
2004)

5.2 Mantle dynamics and coupling with surface processes

Mantle dynamics constitute the engine accounting for the post-
Laramian uplift and erosion of the Canadian and Mexican 
forelands. Due to a corner effect of the Pacific subduction, hot 
mantle is progressively thinning and uplifting the North Ameri-
can lithosphere over an extremely wide surface, accounting for 
the post-Laramian collapse of the Cordilleran orogen coeval 
with the development of metamorphic core complexes and ba-
sin and range-type extension, for recent volcanic activity, but 
also for the wide doming and unroofing observed in the fore-
land, from Canada to southern Mexico (Price 1986; Hyndman 
et al. 2005; Fig. 15c).

In the Central Apennines, rapid changes observed during the 
Upper Pliocene and Pleistocene in the subsidence history of 
the Adriatic foredeep and coeval increase in the uplift rates 
of adjacent foothills have been interpreted as an evidence for 
slab detachment, the slab pull no longer contributing to the 
down-flexing of the Adriatic foreland lithosphere (van der 
Meulen et al. 1998; Wortel & Spakman 1992, 2000; Spakman & 
Wortel 2004). Although such process is still debated, it could 
actually be proposed also to account for the flexural rebound 
observed in the North Algerian foreland, south of the Tellian 
front.

Alternatively, asthenospheric rise and advection of hot 
mantle in the Western Mediterranean and Tyrrhenian back arc 
basins could easily explain such late stage vertical motion of the 
foreland lithosphere (Wortel & Spakman 1992, 2000; Spakman 
& Wortel 2004).

Conclusions

Strong coupling between the thrust belt and its foreland can 
occur at different times in both subduction-related (i.e. Cordil-
leran-type) or collision-related (i.e. Alpine-type) orogens, thus 
accounting for both early and late foreland inversion processes 
(Ziegler et al. 1998, 2002).

Since the mid 80’s, deep crustal seismic imaging across many 
orogens such as the Alps, the Pyrenees and the North American 
Cordillera has provided direct controls on the deep architec-
ture of the thrust systems, and a better understanding of the 
coupling between thin-skinned and thick-skinned tectonics, 
whereas since the 90’s, mantle tomography is progressively doc-
umenting the occurrence or absence of lithospheric slabs be-
neath recent orogens. In many thrust belts where neither deep 
seismics nor mantle tomography is yet available, the pending 
question is to know whether slab detachment may account for 
rapid uplift and post-orogenic erosion of former foreland ba-
sins, as described in the Central Apennines by van der Meulen 
et al. (1998), or if mantle convection and asthenospheric rise 
alone can account for post-orogenic uplift, as evidenced in the 
Alberta and Veracruz basins.

Source to sink studies are also necessary to define the spatial 
and temporal coupling between erosion, sedimentary transfer 
and deposition. Until recently, most efforts were devoted to high 
resolution seismostratigraphic studies coupled with core and 
outcrop descriptions of the synflexural/synkinematic sedimen-
tary infill of the foreland basins. Today, however, GPS measure-
ments and thermo-chronometers such as Apatite Fission Tracks 
and U-Th, can provide direct control on the uplift and unroofing 
history of the hinterland. Ultimately, new techniques must still 
be developed to provide information on paleo-elevations, which 
are essential for discriminating between different tectonic mod-
els, e.g. orogenic collapse and rollback, and which are also likely 
to control the boundary conditions (hydraulic heads) required 
for computing the pore-fluid pressure evolution in adjacent low 
lands (Schneider 2003; Schneider et al. 2004; Roure et al. 2005b).

Further understanding of the coupling between deep (man-
tle) and surface (climate) processes in orogens and adjacent 
foreland basins constitutes one of the main current challenges 
for Earth scientists, which will require access to well docu-
mented data bases to feed numerical models, involving a lot 
of integration and multi-disciplinary team work. International 
networks such as the Transmed (Cavazza et al. 2004a, b) and 
ILP task forces and related workshops may help to initiate 
these new collaborations. Pioneer work is currently done in 
Europe (Topo-Europe programme), where continental topo-
graphy has been indeed widely impacted by the Alpine orogen 
and recent mantle upwelling in the Western Mediterranean and 
West European rift system.
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