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Abstract Remarkable bedding features occur in Middle

Cambrian platy limestone of the Western Hills close to

Beijing in NE-China, which are intercalated in a sequence

of shallow water carbonates (mudstones, storm deposits,

oolitic grainstones). The platy limestone beds (up to 5 cm

thickness) have undergone complex diagenetic compaction

and pressure solution. Varying facies types are character-

ized by wavy, stylolitic boundaries with different thickness

of clay accumulation and common lateral pinch out. Cross-

cutting relationships of stylolites commonly destroy pri-

mary bed-surfaces. This indicates an intimate interfingering

resulting in an indenting fabric of primary separated facies

types. Nevertheless, primary sedimentary boundaries can

be recognized. There occur varying types of compaction

features documented by different stylolite types with

varying amplitudes and thickness of clay-enrichments

(parallel clay seams, stylolamination, stylo-nodular and

stylo-brecciated structures with multi-grained seams).

Bedded limestone of the type documented, generally

belong to the limestone family of Plattenkalk, Lithographic

Limestone or platy limestone, which can form in different

environments. Consequently, using these names without

detailed data on some specific parameters (e.g. thickness,

surface morphology, composition of allochems, particle

and crystal size) results in more confusion and hinders the

comparison of Plattenkalk, Lithographic Limestone and

platy limestone from different locations throughout the

earth history. Therefore, a classification is proposed here

which is based on macroscopic, microscopic, and sub-

microscopic parameters. Plattenkalk and platy limestone

are considered to form the two main groups. Plattenkalk

beds are laterally consistent and have parallel, horizontal

surfaces. Platy limestone can pinch out laterally and

reveals irregular and inclined bed surfaces. Single beds in

both can have different thickness, internal structure (e.g.

micritic, microsparitic) and fabric (e.g. homogeneous,

nodular), particle content and other variations (e.g. chem-

ical, mineralogical). These parameters should be added to

the basic name and used in a system similar to Folk’s

limestone classification. Lithographic Limestone is defined

as a subgroup of Plattenkalk with well-defined parameters.

A consequent use of this classification will also help to

understand fossil preservation and/or non-preservation in

different types of Plattenkalk, Lithographic Limestone, and

platy limestone.
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Introduction

Plattenkalk, Lithographic Limestone and platy limestone

are in the focus of the International Symposium on Litho-

graphic Limestone and Plattenkalk. But, how is Plattenkalk

defined? Swinburne and Hemleben (1994) discuss the var-

ious types and define it as ‘‘a flat, tabular, thinly bedded

(cm–dm scale) and finely laminated (mm or submillimetric
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scale) limestone, composed predominantly of fine-grained

lime mud, or micrite which has undergone early cemen-

tation’’. Furthermore, Lithographic Limestone is described

as one very narrowly defined type of Plattenkalk (Swin-

burne and Hemleben 1994; Röper 2005). Meanwhile, there

was a wide variety of Plattenkalk presented during the

different Symposiums on Lithographic Limestone and

Plattenkalk. From ideal Plattenkalk of the Solnhofen type

to limestone, which separates in not well-defined plates

with irregular bed surfaces; all is included in the term

Plattenkalk. However, a closer look to the microfacies

shows, that this broad non-definition covers different types

which comprise very tight homogeneous mudstones, pe-

loidal packstones, and grainstones with primary varying

amounts of siliciclastic detrital input. Swinburne and

Hemleben (1994) summarize that ‘‘…though Plattenkalks

seem physically very similar, the origin of each may have

been quite different’’.

Munnecke et al. (2008) have shown that the sedimentary

matrix of Plattenkalk has received markedly less attention

compared with varying palaeontological aspects. Even the

nomenclature of Plattenkalk successions is not clearly

defined. Röper (2005) states that ‘‘the term Plattenkalk, in

the past was restricted to workable slabs of intermediate

thickness, has been transferred to all carbonate marine

sediments, in which bioturbation partially or completely

stopped, and thus the primary lamination and fine stratifi-

cation of the sediments was preserved’’. Munnecke et al.

(2008) conclude that this excludes limestone used for

lithography because they do not exhibit lamination. But

very fine, faint lamination can occur as documented by

Koch (2007). Although the term ‘‘platy limestone’’ seems

to be an overwhelming alternative, it seems to be too wide.

On the basis of these points we analyzed Middle Cam-

brian platy limestone from the Western Hills close to

Beijing (China) which are separating in plates of some

centimetre thickness when quarried. They reveal intensive

compaction features influencing and vanishing primary

very different microfacies types of a shallow marine

environment. Consequently, they do not fit in any

description and/or interpretation of Plattenkalk given until

now.

Throughout this study, the term ‘‘platy limestone’’ will

be used in the sense of Röper (2005), Munnecke et al.

(2008). In the final discussion we propose a classification

based on published data on Plattenkalk, Lithographic

Limestone and platy limestone as well as on our own data.

Geologic frame

The North China Carbonate Platform comprises strata from

the Early Cambrian to the Late Ordovician (about

530–460 Ma). Up to 2,000 m of limestone and dolomite

were deposited reflecting changes in depositional envi-

ronments, palaeoclimate, relative sea-level, tectonic uplift

and subsidence. The Early Paleozoic Carbonate Platform is

situated in NE China, with the city of Beijing in the north-

eastern part and the city of Xian on the southern margin

(Fig. 1). It covers an area of about 1,500 km east–west and

1,000 km north–south extension. The regional geology and

the tectonic development are described by Yang et al.

(1986), Meyerhoff et al. (1995), Wang and Mo (1995),

Meng et al. (1996), Wang (1985).

Two megasequences (transgressive–regressive cycles),

which are separated by a major palaeokarst zone (Meng

et al. 1997), can be distinguished within the strata of the

North China Carbonate Platform. The first sequence com-

prises Lower Cambrian to Lower Ordovician strata and the

second Middle and Upper Ordovician strata. The Early

Paleozoic Carbonate Platform consists of nine depositional

sequences, generally 50–150 m thick.

During the Lower Cambrian flooding of the Huabei

Craton, phosphorites and phosphatic sandstones were

deposited that are overlain by carbonates, mudrocks, and

evaporites (Mantou Formation). The Middle Cambrian is

subdivided into the Maozhuang, Xuzhuang and Zhangxia

Formations (Fig. 2). A continued long-term relative rise in

sea-level occurred in Cambrian times and resulted in the

transgressive part of the first megasequence on the plat-

form, reaching from the basal Mantou Formation to the

Zhangxia Formation (Fig. 2). The Middle Cambrian

Xuzhuang Formation follows above with a conformable

boundary to the underlying Maozhuang Formation. The

Xuzhuang Formation reaches 120 m in thickness and can

be subdivided in a lower part predominantly consisting of

mudrocks with thin bioclastic and oolitic limestone, and an

upper part composed of oolitic limestone with thin shale

interbeds indicating sedimentation on a shallow water

carbonate platform. The upper boundary is marked by a

basal lag deposit of the overlying Zhangxia Formation,

which reaches 160 m thickness in the Beijing area and is

characterized by abundant oolitic limestone, storm depos-

its, calcirudites, skeletal peloidal limestone, micritic

limestone and dolomite. The Zhangxia Formation can be

subdivided in a lower marly unit and an upper unit domi-

nated by oolites (Figs. 3, 4). Storm beds are common in the

lower part, and are developed as graded, cross-laminated

limestone of low thickness alternating with dolomitic

shales.

After a phase of tilting of the North China Carbonate

Platform to the north, cross-stratified grainstones and

stromatolitic-thrombolitic bioherms are most obvious

(Meng et al. 1997). During the Upper Cambrian and Lower

Ordovician fine-grained limestone, dolomite and intertidal

sediments were deposited, documenting the regressive part
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of the first megacycle. The Middle–Upper Ordovician

megasequence overlying is predominantly composed of

shallow-water carbonates with thick evaporite units that are

not described in detail in the present paper. The

stratigraphic frame of the Middle Cambrian of the Moa-

zhuangian to Zhangxia formations is defined by eight

trilobite zones (Fig. 2).
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Fig. 1 Geographical setting and simplified geological map of the

study area indicating Mesozoic volcanics, Lower Cambrian (Mantou

and Maozhuang Formation), Middle Cambrian (Xuzhuang

Formation), Middle Cambrian (Zhangxia Formation), Ordovician,

and Permian units (modified after Meng et al. 1996)
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Fig. 2 The occurrence of the thin-bedded carbonates (platy lime-

stone) in the Middle Cambrian including names of formations and

trilobite zones (altered from Meng et al. 1997)
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Fig. 3 The carbonates in the outcrop of about 40 m height revealing

alternations of fine-bedded grey-coloured limestone and brownish,

thin-bedded zones. The wall corresponds to cycles 1–3 and incom-

plete cycle 4 as defined by Meng et al. (1997). The thicker bed at the

top of cycle 2 with round weathering features predominantly consists

of cross-bedded oolitic grainstones (compare with Fig. 4)
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Studied outcrops and methodology

The Western Hill outcrops are located approximately

20 km west of Beijing 40�0002100 N, 116�0105400 E), in the

Yanshan orogenic zone. The area is characterized by high

mountains, which expose cyclic sedimentary sequences of

Cambrian carbonate rocks. Steep walls of bedded lime-

stone of the Zhangxia Formation occur on the flanks of

narrow valleys (Fig. 3). Even from longer distance alter-

nations of fine grey limestone beds with brownish thin-

bedded units can be distinguished.

The thin-bedded, nodular, platy limestone is inter bed-

ded between oolitic packstones and grainstones of the 1st

and the 2nd cycle of the Zhangxia Formation. They were

first analyzed macroscopically in the field: repetitions of

varying facies types occur in the different thin-bedded

limestone layers of zones Z1—Z5A, exhibiting a clear

cyclic pattern (Figs. 3, 4). They are predominantly com-

posed of peloidal-oolitic packstones and grainstones,

oolitic grainstones, intraclastic packstones and grainstones,

peloidal mudstones, silty, clayey mudstones, and pure

mudstones. Furthermore crystalline dolomite and lime-

stone, dolomitized to various degrees, can be recognized.

In many parts of the outcrops close to Xianweidian and

about 40 km west besides the railway to Qingbaikou well-

bedded limestone, very thin-bedded limestone and platy

limestone can be observed. The sequences also reveal local

small patch reefs (stromatolitic-thrombolitic bioherms) of

0.5 to about 3 m thickness, which pinch out laterally within

decimetres into platy limestone or even into clay/marl

sediments. Also beds of some decimetre thickness are

intercalated resulting in a cyclic appearance of the Middle

Cambrian sequence.

A representative succession of 2 m thickness of zone Z3

(Fig. 4) was selected for further analyses of the genesis of

the platy limestone. Selected individual layers and small

units of this succession were analysed in the field and

characteristic facies types were sampled for thin section

analysis.

The Middle Cambrian platy limestones are characterized

by wavy, stylolitic boundaries between single beds

revealing different thickness of clay accumulation (Fig. 4).
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Fig. 4 a, b The nodular, platy limestone analyzed occurs between

oolitic packstones and grainstones of the 1st and the 2nd cycle in the

Zhangxia Formation (thickness of cycle 2 is about 12 m). b The zones

Z1–Z5 were analyzed for different facies types occurring in single

limestone beds. c In zone Z3 the depicted representative section

contains all characteristic sedimentary features. Note the common

pinch-out (black arrows) of beds within a lateral distance of some

centimetres to decimetres, which results in the characteristic wavy

texture of the platy limestone. Furthermore, cross-cutting features

occur (white arrows) with symmetric and asymmetric boundaries.

Parallel boundaries of single beds occur rarely (modified from Meng

et al. 1997)
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Most characteristic are cross-cutting relationships of styl-

olites which only locally allow horizontal parallel surfaces

of the beds. Most obvious is the lateral pinch out of beds

with a maximum of 5 cm thickness within a lateral distance

of some centimetres to decimetres.

Microfacies and diagenesis

The microfacies analysis allows to recognize lateral and

vertical variations within single layers and commonly also

within the scale of a thin section. This data can be trans-

formed to the macroscopic appearance of single beds, of

their lateral and vertical interfingering and pinch out. The

analysis carried out do not allow to elucidate the diagenetic

history of the Middle Cambrian carbonates throughout (e.g.

the dolomitization, dedolomitization, and silicification)

without additional analysis (e.g., chemistry, isotopes, ca-

thodoluminescence). Only some insights from selected

samples of the interval analyzed can be presented. Con-

sequently the diagenetic conclusions just give a first

impression of the complexity of the processes. Three major

microfacies types can be observed.

Oolitic grainstones

Oolitic grainstones with well-preserved ooids and tangen-

tial microstructure of ooid-cortices commonly occur in

thicker layers and also in thin intercalations (Fig. 5a). The

cores of the ooids are composed of peloids and of frag-

ments of echinoids and molluscs. These ooids are not

dissolved and therefore are interpreted to be of primary

Mg-calcite mineralogy as described by Strasser (1986),

Strohmenger et al. (1987) from Upper Jurassic limestone in

France and Slovenia.

The ooids show well-developed radial textures of light-

coloured triangular zones alternating with dark zones

within an inner thick sequence of cortices which is covered

by thin seams to be of black, probably organic matter

(Fig. 5a, b). Nevertheless tangential relic textures can be

recognized. These light-coloured radial textures are inter-

preted as recrystallisation and aggrading neomorphism of

inner cortices. Subsequently outer cortices were formed

which reveal no alteration. Therefore a change of water

chemistry during the formation of ooids is assumed with a

time gap between the two types of cortices. The ooids

reveal relatively smooth cement seams (Fig. 5a, b) con-

sisting of characteristic bladed crystals of primary Mg-

calcite mineralogy (Fig. 5b) as described by Schroeder

(1979), Longman (1980). Due to synsedimentary com-

paction outer cortices of some ooids split off, exactly at the

surface of the inner zone of cortices, which was covered by

black material, locally forming elongated intraparticle pore

spaces. Similar features were reported by Rothe (1969)

from Zechstein carbonates in NW-Germany. Subsequently

marine cement seams were formed within these elongated

secondary pores as well as around ooids.

Fitting of grains in packstones and grainstones (Fig. 5e)

is another process, which commonly is ascribed to an early

freshwater influx (Strohmenger et al. 1987; Flügel 2004).

During this process the point-contacts of single grains

undergo intensive dissolution. Consequently they are

transformed to elongate and/or even to sutured grains

contacts with enrichment of insoluble residues.

Locally relics of micritic matrix are found in inter-

granular pores (Fig. 5b), which are now recrystallized to

microsparite. Melim et al. (2002) summarize many obser-

vations of latest studies on the Bahama Platform and

conclude that the microspar is a cement as also reported by

Munnecke et al. (1997). These findings are in contradiction

to the widely accepted interpretation that microspar is the

product of recrystallisation due to an early freshwater

influx (Folk 1965).

Other ooids were completely dissolved. The oomolds

were subsequently filled by small and very large dolomite

rhomboedra first and subsequently by coarse crystalline to

blocky calcite in the relic pore space (Fig. 5c). These ooids

are interpreted to be of primary aragonitic mineralogy. The

dissolution must have occurred after an early lithification

so that the sedimentary structure did not collapse and the

oomolds remained open.

Ooids of a primary alternating Mg-calcite/aragonite

mineralogy reveal similar diagenetic textures (Fig. 5d).

There, the primary Mg-calcite core (peloid, intraclasts)

was transformed to fine-crystalline dolomite, the outer

aragonitic cortices were dissolved completely. Conse-

quently bimineralic ooids as described by Strasser

(1986) from Purbeckian sediments occurred during the

Middle Cambrian of NE China as also reported by Chow

and James (1987) from Middle and Upper Cambrian

platform carbonates in western Newfoundland (Canada).

They reflect changing chemical conditions in a shal-

low marine environment as described throughout the

earth history (Tucker 1984; Wilkinson et al. 1984;

Moore et al. 1986; Strasser 1986; Chow and James 1987;

Heydari and Moore 1994; Strohmenger et al. 1987;

Swirydczuk 1988). Moreover, primary relic textures are

commonly preserved when Mg-calcite is stabilized to

calcite according to Oti and Müller (1985), Koch and

Rothe (1985).

The dolomitization of Mg-calcite peloids, which formed

cores of ooids probably also occurred in the early phase of

Mg-calcite stabilization (Fig. 5d). It must have occurred

before the outer sequence of ooid cortices was dissolved

and subsequently dolomite was precipitated in the newly

formed partial oomolds.

Cambrian platy limestone by compaction; NE-China S9



Echinoid packstones

Echinoid packstones containing also other fossil fragments

like molluscs and unknown biogenic fragments (Fig. 5e)

are characterized by intense micro-sutured stylolitic grain

contacts. The monocrystals of echinoid fragments are very

resistant against pressure solution. Consequently the matrix

of the packstone is predominantly dissolved, resulting in

enrichments of clay flasers between particles. Increasing

compaction and pressure solution will result in increasing

sutured grain contacts between particles (Fig. 5e). In other

limestone without micrite, echinoid fragments commonly
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Fig. 5 a Oolitic grainstone with well-preserved ooids and two types

of ooid-cortices. Inner cortices reveal recrystallisation of primary

tangential micro textures to radial light-coloured textures. Outer

cortices predominantly preserved their primary tangential textures.

Ooids are surrounded by isopachous marine cement seams (arrows;

Mg-calcite). Locally relics of micrite (M) recrystallized to microspar

can be found. b Early compaction resulted in deformation and split

off of outer cortices forming intraparticle pore space which was filled

by marine cement (Z). Note common light-coloured triangular

recrystallisation-areas (T) in the inner zone of primarily tangential

cortices. Note also cement seams with relic textures of former bladed

Mg-calcite (S). c Some ooids were completely dissolved. The

oomolds first were filled by smaller and very large dolomite

rhombohedra (d). The relic pore space subsequently was cemented

by coarse granular calcite (c). d Composed ooids show the dissolution

of outer cortices (primary aragonite), cementation of these molds by

dolomite (D) and calcite (C), and the formation of microcrystalline

dolomite (MD) in the inner part (primary Mg-calcite). e Fragments of

echinoids and other fossils in a primary matrix-rich packstone were

intensively compacted and reveal sutured grain contacts (arrows).

f Pure mudstones are locally traversed by fractures filled with

granular calcite (C)
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reveal thin syntaxial overgrowth as described by Evamy

and Shearman (1965, 1969). Syntaxial overgrowth com-

monly was interpreted as formed during an early

freshwater influx (Longman 1980; Walkden and Berry

1984) which in most cases need free, open interparticle

pore space for their development. But latest studies on

Bahamian sediments indicate that granular cements and

also syntaxial overgrowth can be formed from slightly

altered marine pore waters. Melim et al. (2002) name an

early diagenesis under such conditions ‘‘marine-burial

diagenesis’’ to distinguish it from both, the well-docu-

mented near-surface marine diagenesis characterized by

hardgrounds and/or marine cementation, and deeper burial

diagenesis characterized by compaction, pressure solution,

and late cements. This diagenesis in marine pore fluids

mimics many aspects of diagenesis in meteoric pore fluids,

most notably by producing a low-Mg calcite limestone

with blocky spar, neomorphism, microspar and moldic

porosity. Dissolution of aragonitic bioclasts in Cretaceous

rudists limestone during early organic oxidation underlines

these new findings (Sanders 2003).

Pure, non-fossiliferous micrites

Pure non-fossiliferous micrites only reveal extension veins

(Fig. 5f; horizontal, vertical, subvertical) corresponding to

varying tectonic stress-stages. These fractures are now

cemented by coarse-granular calcite.

Silicification is only locally obvious. A first generation

of minor authigenic silica occurs within fragments of

echinoids and some molluscs. It is partly mimicking the

primary shell structures and reveals idiomorphic crystal

terminations of quartz. A second generation of authigenic

silica is bound as micro-nodules and as fibrous silica flasers

to fractures and is also enriched along stylolites because of

high pressure solution stability.

Clay enrichments at primary boundaries and stylolitic

contacts between varying facies types of small-scale sedi-

mentation units are most characteristic for Middle

Cambrian platy limestone of NE China. Locally alterna-

tions of silty, clayey micrite with fine-grained bioclastic

detritus and recrystallized pelsparite (Fig. 6a) occur. Fur-

thermore, vertical alternations and lateral interfingering of

silty, slightly pyritic marlstone, overlain by slightly silty,

pyritic clay-bearing microsparite rich in detrital chlorite,

and silty, recrystallized mudstones can be found.

Marked features of differential compaction can be

observed especially in clayey sediments (Fig. 6b). A clay-

rich sediment (mudstone-wackestone) with minor amounts

of biogenic particles (small molluscs and some gastropods

of up to 3 mm in size) was deposited primarily.

In this limestone small dolomite rhombohedra were

formed which later were altered to dedolomite present now

as tiny brown spots in dark grey clay enrichments. A pe-

loidal micrite was deposited above (Fig. 6b) which is now

preserved as slightly recrystallized limestone with thin clay

flakes and some traces of microfossils (calcispheres?).

Around gastropods, which were dissolved soon after

deposition and cemented by granular calcite, marked dif-

ferential compaction occurs (Fig. 6b).

Within the same carbonate layer (bed) different facies

types can be recognized which are separated by stylolites

(Fig. 6c). Locally relics of pure micrite were squeezed

between other microfacies types. Further pressure solution

will result in the complete disappearance (dissolution) of

such relics. Many of these features can be found within one

thin section or separated in different microfacies types,

which are bordered against each other by stylolites

(Fig. 6d).

Different limestone types are separated by stylolitic

clay-rich accumulations of 0.01–1 mm thickness (Fig. 6e).

There occur mudstones, fossiliferous mudstones, biogenic

packstones, and biogenic bearing mudstones as well as silty

marls and silty claystone. The matrix rock is composed of a

slightly silty wackestone–packstone, which is nearly

completely composed of very fine debris of fossils and

carbonate crystals (10–100 lm). Furthermore, dark frag-

ments of clayey carbonate occur which are laminated and

contain also very fine fossil debris.

Locally also fragments of recrystallized micrite and of

wackestone–packstone rich in microfossil fragments occur.

All this indicates complete dislocation and penetration of

varying facies types (intensive pressure solution) primarily

deposited as specific sedimentary layers above and aside of

each other.

Two different generations of extension veins occur at

last. They are separated by marked stylolites (Fig. 6f). The

first generation of fractures clearly was formed before

stylolitization. The extension veins are up to 50 lm wide

and are filled by coarse granular calcite. They are com-

monly interrupted and dislocated by stylolites. A second

generation of fractures, which commonly occurs in

‘‘swarms’’ was formed after stylolitization. These fractures

are smaller than the first generation and filled by fine-

granular calcite and penetrate the stylolites without

interruption.

The diagenetic events described above can be summa-

rized and ordered in a relative time sequence (Fig. 7). It has

to be stressed that this was established on the base of

microscopic analysis only.

Mesogenetic shallow and deep burial compaction

Stylolites are common throughout the profile. The ampli-

tudes are ranging between few millimetres and 2.5

Cambrian platy limestone by compaction; NE-China S11
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Fig. 6 Boundaries of sedimentation units and stylolitic contacts

between varying facies types. a Alternation of silty, clayey micrite

(Si) with fine-grained bioclastic packstone (B), and recrystallized

pelsparite (Pel). The form of the sedimentation units depicted,

indicates lateral pinch out within a low energy environment. b In a

clay-rich mudstone-wackestone (CM) with minor amounts of small

gastropods (G; up to 3 mm in size) marked differential compaction

occurs. Around the gastropod (dissolved and cemented by granular
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corresponds to the height of the gastropod. Within the compacted

mudstone tiny, brownish dedolomite rhombohedra occur (arrows). A

peloidal lens is characterized by clay flasers (F). The uppermost
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microfossils. c Different facies types can be separated by marked

stylolitic boundaries even within one limestone bed. Locally relics of

mudstone (M), calcareous claystone (C), and relics of echinoid-

packstones (EP) can be recognized. They are overlain by echinoid-

ooid-packstone (EOP). d Ooid bearing lithoclast peloid packstone

overlain by an oolitic grainstone. The boundary is marked by an

undulating stylolitic contact (arrows). Particles, which are relatively

more stable against pressure solution act as spikes invading the over-

or underlying rock. Ooids with well-preserved tangential textures are

interpreted as primary Mg-calcite ooids. Ooids in the overlying

grainstone were bimineralic ooids with Mg-calcite cores and arago-

nitic outer cortices. e Different limestone types (M mudstone, BM
biogenic bearing mudstone, BP biogenic packstones, Si silty marls,

SiC silty claystone, E echinoid fragment) are separated by stylolitic

clay-rich accumulations of 0.01–1 mm thickness. The matrix rock is a

slightly silty wackestone–packstone (P) nearly completely composed

of very fine debris of fossils and carbonate crystals (10–100 lm). f At

least two different generations of fractures occur, interrupted by

marked stylolites. The first generation of fractures (depicted here),

which is dislocated by stylolites, was formed before stylolitization.

The fractures are up to 50 lm wide and are filled by coarse granular

calcite
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centimetres. The relative density of stylolites decreases to

the top of the profile. Their style, spatial distribution and

the thickness of clay enrichments allow the differentiation

in several types.

The stylolite type (thickness 0.5–5 mm) which pre-

dominantly is responsible for the formation of diagenetic

bedding (Fig. 6f) is nearly parallel to the original bedding

plane (Wanless 1979) and is smooth with slightly weavy

appearance (Logan and Semeniuk 1976). Locally iron

minerals and silica neoformations are associated with clay

residues.

A second type of stylolites penetrates limestone beds

and commonly forms irregular anastomosing sets (Fig. 6c,

e). These stylolites have no influence on the macroscopic

bedding features of the carbonate rocks. Their amplitude is

low and they form a dense network of interconnected

stylolites. The thickness of the clay enrichments on single

stylolites is \0.3 mm. They are often associated with

sutured multi-grain seams (Fig. 5d) as classified by Wan-

less (1979).

A third type of stylolites is characterized by stylolami-

nated sets often developing laterally in small swarms

around components and in clay rich carbonates (Fig. 6b).

They have amplitudes of a few millimetres and form dense

swarms with a lateral extension of a few centimetres. This

type also contributes significantly to the formation of dia-

genetic bedding.

Furthermore, horizontal stylolites as defined by Trurnit

(1967), Trurnit and Amstutz (1979) with marked small

amplitudes occur (Fig. 6f) documenting lateral compaction

stress.

Compaction, pressure solution, and stylolitization have

been described by many authors (e.g. Bathurst 1975, 1995;

Füchtbauer and Müller 1977; Tucker and Wright 1990;

Railsback 1993; Flügel 2004). A general subdivision in

mechanical compaction (loss of pore water, dislocation and

rotation of allochems) and in chemical compaction (pres-

sure solution, stylolitization) has to be made (Brown 1959;

Barrett 1964; Fruth et al. 1966; Logan and Semeniuk 1976;

Wanless 1979; Buxton and Sibley 1981; Pratt 1982; Shinn

Eogenetic stage

Recrystalliza-
tion 1.st ooid
generation

2nd gene-
ration ooid

cortices

Iso-
pacheous
cements

Compaction;
split-off

Telogene-
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Dolomi-
tization

Dedolo-
mitization

Mesogenetic stage
shallow and deep

burial
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burial
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grains
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microspar
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grains
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Sytaxial
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Dolomite in
molds

Partly
dedolomiti-
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Fig. 7 The relative timing of diagenetic events in the Middle Cambrian limestone analyzed. Subsequently to eogenetic marine and telogenetic

freshwater stages, local dolomitization, and dedolomitization occurred before pressure-solution diagenesis markedly altered the rock
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and Robbin 1983; Simpson 1985; Ricken 1987; Bathurst

1987, 1995).

Nevertheless, the question at which overburden pressure

and temperature the boundary between mechanical and

chemical compaction should be drawn is still open to debate as

discussed by Heidug and Leroy (1994), Zhang and Spiers

(2005), Lehner (2009) and also earlier documented by Park

and Schot (1968), Rezak and Lavoie (1993) and underlined by

the introduction of the term ‘‘chemomechanical process’’

(Lehner 2009). Many calculations and modelings were carried

out to elucidate the loss of porosity and fluid during com-

paction (Meyers a Hill 1983; Ortovela et al. 1993;

Broichhausen et al. 2005), and the time and depth of formation

of stylolites (Audet 1995). Even self-organization (Railsback

1998) and the fractal structure of stylolites was analyzed

(Drummond and Sexton 1998).

The formation of limestone-marl couplets is of great

interest and explained by varying models due to compac-

tion and/or due to variation in primary mineralogical

composition of the carbonate material (Ricken 1987;

Thunell et al. 1991; Westphal and Munnecke 1997;

Westphal et al. 2000; Munnecke et al. 2001).

What is preserved of the primary facies and microfacies

types?

The Zhangxia Formation (about 160 m thick in the Beijing

area) is characterized by oolitic limestone, storm deposits,

calcirudites, skeletal peloidal limestone, micritic limestone

and dolomite. It can be subdivided in a lower, marlier unit

and an upper unit dominated by oolites. Locally also

stromatolitic–thrombolitic bioherms occur intercalated in

shallow marine facies types and often laterally pinching out

within some meters. All different facies types and their

lateral and vertical interfingering observed, reflect low to

moderate energy sedimentary environments influenced by

various admixtures of silt-sized siliciclastic detrital mate-

rial derived from a hinterland.

On the first glance thin-bedded, nodular, platy limestone

are interbedded between oolitic packstones and grainstones

and all other facies types of the 1st and the 2nd cycle of the

Zhangxia Formation, as mentioned above.

Our studies indicate that on the one hand different facies

microfacies types occur within the same thin section in

their original spatial distribution (Fig. 6a, b). Silty, clayey

micrite, fine-grained bioclastic packstone and recrystallized

pelsparite occur in close association reflecting a low to

moderate energy environment with high siliciclastic detri-

tal input and lateral pinch out of sedimentation units.

Clay-rich mudstones and wackestones containing some

gastropods reveal just slight changes in composition indi-

cating a very low energy environment (Fig. 6b).

Furthermore, pronounced differential compaction is docu-

mented by clay seams and flasers running around biomolds of

former gastropods, which were early cemented by granular

calcite. Primary clay rich sediment was compacted within a

lateral distance of about 2 cm to half of the original thickness,

which corresponds to the height of the gastropod nearby.

Furthermore, a peloidal lens revealing much less clay flasers

indicates the primary presence of slightly different clay-rich

sediments.

On the other hand most commonly marked compaction-

dissolution features can be recognized in the scale of the

same thin section (Fig. 6c, d, e, f).

Locally, relics of mudstone, calcareous claystone, and

relics of echinoid-packstone are closely associated and

indented. Overlying echinoid-ooid-packstones reveal ver-

tically indented boundaries indicating the disappearance of

probably large but unknown amounts of different microf-

acies types (Fig. 6c).

In oolitic limestone marked dissolution can be recog-

nized too (Fig. 6d). Ooid bearing lithoclast peloid

packstones are overlain by oolitic grainstones. The

boundary is marked by an undulating stylolitic contact.

Particles relatively more stable against pressure solution

act as spikes invading the over- and underlying rock. Both

rocks indicate different primary facies conditions which are

reflected by different ooids in the overlying microfacies

types separated by the stylolite. Ooids with well-preserved

tangential textures in the lower microfacies type are

interpreted as primary Mg-calcite ooids. Ooids in the

overlying grainstone are interpreted as bimineralic ooids

with Mg-calcite cores and aragonitic outer cortices.

In other samples a complex mixture of different microfa-

cies types is preserved (Fig. 6e). Mudstone, biogenic bearing

mudstone, biogenic packstone, silty marl, silty claystone, and

echinoid packstone are separated by stylolitic clay-rich

accumulations of 0.01–1 mm thickness. A slightly silty

wackestone–packstone, nearly completely composed of very

fine debris of fossils and carbonate crystals (10–100 lm) is

considered as background sediment.

The insoluble residue varies in the different microfacies

types and is enriched in stylolites containing different

amounts of silty quartz derived from silty claystones and

marls.

All these sediments were primarily deposited besides

and above each other according to ‘‘Walther’s Law’’

reflecting primary low energy environments with the con-

temporary intercalation of high-energy oolitic facies. It

cannot be excluded that different microfacies types were

completely dissolved and consequently are missing in the

sediment record now. Furthermore, there occur at least two

generations of fractures interrupted by marked stylolites

(Fig. 6f), which resulted in a more intensive dislocation of

the isolated relics of different facies types.
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The microfacies types in close association and indented

fabrics reflect areas of small low-relief sedimentary bodies

deposited by low to moderate water energy strongly

influenced by tides. Packstone and grainstone layers were

deposited by higher water energy whereas micrite/clay/

marl deposits were formed in low relief areas by low water

energy.

Consequently, the bedding of Middle Cambrian platy

limestone of the Zhangxia Formation reflects primary dif-

ferent facies types deposited in a shallow sea. On the one

hand, primary sedimentary features were subsequently

enhanced by intense early and late diagenetic compaction,

which was initiated at primary microfacies boundaries

characterized just by very small differences (e.g. non car-

bonates, silt content, microfossils, different ooids). On the

other hand, primary sedimentary features disappeared due

to intense compaction, which resulted in clay seams

(enrichments) of various thicknesses depending on the

primary amount of insoluble residue in different micro-

facies types. Therefore, no statement can be made about

the original thicknesses of the single beds and whether

complete parts disappeared due to intense chemical

compaction.

Discussion and concluding remarks

Plattenkalk, Lithographic Limestone, platy limestone—

Where do the Cambrian limestones belong to?

In the context of the International Symposium on Litho-

graphic Limestone and Plattenkalk it seems to be the right

place for a discussion about the definition of Lithographic

Limestone, Plattenkalk, and platy limestone. This was

already discussed by Swinburne and Hemleben (1994),

who subdivided the depositional environments of these

sediments in (1) lake, (2) lagoon/tidal flat, (3) inner shelf,

and (4) outer shelf. This also has to be seen under the view

of the Fossil Lagerstätten concept (Sailacher 1970) and the

varying quality of preservation of fossils in such sediments.

The basic question is, how the wide variation of carbonate

rocks containing a well-preserved fossil record can be

classified into groups, which reflect the depositional envi-

ronment as well as the conditions for fossil preservation.

This might also enable us to get an idea of the conditions

through time, responsible for the elimination of parts of the

primary fossil content to varying degrees.

In general, single beds of Lithographic Limestone,

Plattenkalk, and platy limestone are commonly homoge-

neous and reveal no or only weak internal bedding features

or laminations. For their differentiation the field, classifi-

cation of stratified sediments as presented by Flügel (2004,

Fig. 3.2 on p. 55) can therefore be used.

Stratification types and their occurrence in varying

depositional environments as illustrated by Flügel (2004;

Fig. 3.2 on p. 57) can also be helpful for further charac-

terization. Planar lamination, planar thin-bedding and

graded bedding are features most common in slope and

basin sediments. These characteristics correspond to the

facies subdivision of Plattenkalk as documented by Swin-

burne and Hemleben (1994).

Furthermore, limestone beds appearing homogeneous at

the first glance in the field might exhibit textural and

structural inhomogeneity when analyzed in greater detail

and reveal internal differentiation in fine laminae repre-

senting different small-scale sedimentation units.

Flügel (2004) postulates that field studies of bedding and

stratification must consider (1) boundary planes and bed-

ding surfaces, (2) bed thickness, (3) composition and

internal structure of beds, and (4) vertical bed sequences.

Bedding and lamination are caused by changes in deposi-

tional, biological and diagenetic factors. Furthermore the

following parameters should be regarded when analyzing

stratified sediments:

(1) Depositional factors primarily include changes in

sedimentation rates, and in the composition of the

sediment, and alternations of sedimentation and non-

sedimentation phases.

(2) Biological controls are predominantly a result of the

interaction of microbes and microbial mats with their

physical and chemical environment and their influ-

ence on binding and trapping of the sediment (Noffke

et al. 2001). Bioturbation commonly alters or destroys

bedding and lamination structures and contributes to a

homogenization of the sediment.

It is obvious that even small changes in sediment

composition (primary and/or diagenetic) lead to different

conditions resulting in the conservation of fossils to vary-

ing degrees. Therefore, primary facies and early diagenesis

are most responsible for the conservation potential in such

limestone.

This is also valid for the Upper Jurassic Plattenkalk of

Southern Germany (Solnhofen Limestone) deposited in

different basins with varying conditions over a period of

about 5 Mio years (Schweigert 2007). Most prominent

models for their formation are published by Barthel (1972),

Keupp (1977), Viohl (1998), Keupp et al. (2007). The fine

alternation of pure limestone and thin/or thick marl inter-

calations either reflect primary sedimentary processes or

were formed by diagenetic alterations (Ricken 1987;

Westphal and Munnecke 1997; Munnecke et al. 2001)

enhancing primary sedimentological signals. Furthermore,

Viohl and Zappa (2007) document silicified Plattenkalk

from the Schamhaupten location (Kimmeridgian–Tithonian,

S-Germany; ‘‘Kieselplattenkalk’’). Dolomitic Plattenkalk is
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described by Fürsich et al. (2007) from the Upper Kim-

meridgian of the Northern Franconian Alb. Lanza and

Zeiss (2007) document ‘‘Lithographic Limestone’’ from the

Upper Jurassic (Tithonian) of Argentinia. Dietl et al.

(1998), Bantel et al. (1999) describe sections of the

Nusplingen Lithographic Limestone (Nusplinger Platten-

kalk; Upper Kimmeridgian of SW-Germany). Jurkovsek

and Kolar-Jurkovsek (2007) describe a variety of platy

limestone and laminated limestone rich in fossils (espe-

cially fishes) from various horizons within the Cretaceous

platform carbonates from the Upper Cretaceous Komen–

Triest Plateau in Slovenia. Plattenkalk with primary mil-

limetrical lamination from the Upper Cretaceous of NE

Mexico are described by Ifrim et al. (2007). The Fossil

Lagerstätte of Monte Bolca (Eocene, Northern Italy) is

described by Viohl (2008) and famous for its fish findings.

It can be stated that stagnant bottom water conditions

and micritic matrix are most characteristic for Plattenkalk

and Lithographic Limestone as described above. Combined

with dark colours, which are indicative for a certain content

of fine-dispersed organic matter, these parameters are the

prerequisite for good fossil preservation. As already dis-

cussed by Füchtbauer and Goldschmidt (1964), Hall and

Kennedy (1967), Scherer (1977), Kemper and Koch

(1982), Seuß et al. (2009) organic matter in the matrix and

in fossils hinders the water access, oxidation and recrys-

tallisation. A very fine crystal size of micrite is responsible

for very low flow rates forming a closed diagenetic system.

Both are favoured by fine dispersed organic matter (stag-

nant bottom water) and by homogeneous very fine particle

size of micrite (0.5–3 lm) as discussed by Koch (2007) for

the Solnhofen Limestone. If the system is opened (enlarged

permeability) by silty, sandy admixtures or by aggrading

neomorphism of the micrite (recrystallisation) the fossils

within the limestone bed will be altered (oxidation) within

time spans of some years to tens of years.

Therefore, conditions of the depositional environment

are most important for the later quality of bedded limestone

as Fossil Lagerstätten. Consequently, a sound facies anal-

ysis based on sedimentological, faunal, and diagenetic

parameters should be established. These parameters should

also be added to the names of the bedded limestones

(Plattenkalk, Lithographic Limestone, platy limestone)

giving informations of the environmental conditions.

In all these models of Plattenkalk, Lithographic Limestone

and platy limestone diagenetic parameters (diagenetic

bedding, stylolitization, clay-marl alternations, dissolution,

cementation) commonly influence and alter the primary sed-

imentary record of the fine-grained sediments. But these

parameters, which are most characteristic for the platy lime-

stone analyzed, were neglected until now in all discussions

about Plattenkalk and platy limestone and attempts to their

classification.

How to classify Plattenkalk, Lithographic Limestone

and platy limestone?

Following the proposal of McKee and Weir (1953) the term

‘‘bed’’ should be limited to strata thicker than 1 cm. Very thin

strata (thickness\1 cm) are called laminae (Campbell 1967).

Laminae are the result of changing depositional conditions

causing variations in grain size, texture, mineral composition,

and content of clay and organic matter.

Bedded limestone of the type documented here, gener-

ally belong to the limestone ‘‘families’’ named Plattenkalk,

Lithographic Limestone or platy limestone. In general, a

rough idea of the depositional environment and genesis is

also combined with these names. However, these lime-

stones can form in many environments as summarized by

Swinburne and Hemleben (1994). Consequently, using

these names without detailed knowledge about some

characteristic parameters (e.g. thickness, surface morphol-

ogy, composition of allochems, particle and crystal size)

results in more confusion and hinders the comparison of

Plattenkalk, Lithographic Limestone, and platy limestone

from different locations throughout the earth history.

Therefore, we propose to strictly separate the different

terms as follows:

The descriptive term Plattenkalk refers to sequences

composed of fine-grained, laminated limestone, which are

bedded in flat centimetre-decimetre thick, parallel-sided

units (Swinburne and Hemleben 1994).

The term Lithographic Limestone (‘‘Lithographens-

chiefer’’) according to Hohl (1981) refers to an Upper

Jurassic platy limestone, which can be used for lithography

(see Portenlänger 1998; Keupp 1999; Derra 2002) because

of its homogeneous texture and very fine particle size.

Bernier (1994) underlines the use of the word lithographic

in order to have a precise word to define a precise limestone.

It is predominantly quarried in the area of Solnhofen and

specific technical data are required (homogeneous, very

tight, no visible porosity, intercrystalline microporosity of

up to 8% between tiny crystals of 0.5–2.5 lm in size, high

pressure stability (yellowish Solnhofen = 1,600 kg/cm2;

grey–bluish Solnhofen = 2,600 kg/cm2). Therefore, the

term Lithographic Limestone is well defined and excludes

all other limestones, which do not fit into this precisely

described group.

Platy limestone can be characterized in a very broad

sense as limestone, which separates in plates of different

thicknesses when quarried (Röper 2005; Munnecke et al.

2008). Platy limestone can have irregular and inclined bed

surfaces, which also can pinch out laterally. Commonly, an

analysis of the morphology of the plates (thickness, bed

surface, horizontal bedding, etc.) is missing.

The single beds in both Plattenkalk and platy limestone

can have different thicknesses, internal structure (e.g.
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micritic, microsparitic) and fabric (e.g. homogeneous,

nodular), fossil content, abiogenic particles, micro-mor-

phology of bed surfaces and other variations (e.g. chemical,

mineralogical). All these detailed parameters should be

added to the basic name of the Plattenkalk and platy

limestone and used in a system similar to Folk’s limestone

classification.

We propose a classification, which is based on these

macroscopic, microscopic and sub-microscopic para-

meters. In general, the term ‘‘stratified sediments’’ can be

used. These can be subdivided into Plattenkalk or platy

limestone even by field analysis.

Further analyses reveal if Lithographic Limestone occur

as a subgroup of Plattenkalk with well-defined parameters,

which allow using this limestone for lithography. Therefore

this name should only be used when this data are available.

Characteristic primary and secondary (later non synsedi-

mentary diagenetic features) should be added to each name

according to a logic system as in Folk’s classification for

limestones (Folk 1959, 1962). The thickness of beds as

well as textural characteristics (homogeneity, lamination)

should be used as prefix in a similar way.

Accordingly, names like ‘‘homogeneous, thin-bedded

Lithographic Limestone’’, or ‘‘siliceous, slightly laminated

Plattenkalk’’, or ‘‘undulatory, compactional, nodular lime-

stone’’ may be used. All these names reflect the depositional

environments to a certain degree as well as diagenetic

parameters. They also give hints to the quality of a limestone,

which might be used in building stone industry. A consequent

use of this classification with all the detailed parameters will

help to understand fossil preservation and/or non-preservation

in different types of Plattenkalk, Lithographic Limestone, and

platy limestone. According to this classification the thin-

bedded limestones of the Zhangxia Formation are classified as

‘‘compaction-formed, platy limestone with parallel, lenticu-

lar, and weavy textures’’. This name clearly reflects the

macroscopic appearance as well as important aspects of the

diagenetic history of these bedded limestones.
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tenkalke (Oberer Malm, Südliche Frankenalb). Abhandlung der
Naturhistorischen Gesellschaft Nürnberg e.V., 37, p. 128.
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