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Continental weathering as the source of iron
in Jurassic iron oolites from Switzerland

Stefan Schunck'*'®, Jérg Rickli'®, Stephan Wohlwend?, Helmut Weissert? and Derek Vance'

Abstract

Iron is extremely insoluble in oxic seawater. The lack of a large aqueous reservoir means that sediments rich in authi-
genic iron are rare in the modern ocean. In the Middle Jurassic, however, condensed iron-rich sedimentary rocks are
widely distributed. Their formation coincides with increased volcanic activity and continental weathering related

to the breakup of Pangea, suggesting iron supply through one of these processes. We studied three Swiss shallow-
marine iron oolites from Herznach, Windgallen and Erzegg, all from condensed sedimentary sequences of Middle to
early Late Jurassic age, to constrain the source of iron to these rocks, combining radiogenic neodymium, strontium
and stable iron isotope analyses. Leached authigenic neodymium isotope compositions, which appear to preserve
the primary signature, serve as a tracer for the potential involvement of hydrothermal fluids in the formation of the
iron oolites. The three iron oolite successions yield crustal Nd isotope compositions (eNd between — 9 and — 7),
providing no evidence for the involvement of such fluids. It is, thus, more likely that iron in the sediments derived
from detrital fluvial inputs. Strontium isotope compositions, which could potentially support these findings, point to
metamorphic overprinting associated with Alpine thrusting. The light iron isotope signatures associated with Middle
to early Late Jurassic condensed sequences, 5°°Fe between — 1.49 and — 0.57%o, suggest that microbially-mediated

Strontium isotopes, lron isotopes

iron reduction was also involved in generating these sediments.
Keywords Middle Jurassic, Iron oolite, Condensed sequence, Continental weathering, Neodymium isotopes,

1 Introduction

The Jurassic Period exhibits high sedimentary facies
diversity in the Alpine Tethys, resulting from major
changes in plate tectonics, in paleoceanography and in
paleoclimate (e.g. Bernoulli & Jenkyns, 1974; Dera et al.,
2011; Norris & Hallam, 1995; Rais et al., 2007; Scotese,
1991; Ziegler, 1988). Peculiar oceanographic conditions
were responsible for widespread deposition of condensed
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iron-rich sequences and hardgrounds during the Middle
Jurassic (e.g. Bernoulli & Jenkyns, 1974; Jenkyns, 1971).
A common feature of these deposits is their red or green-
ish color, originating from abundant iron minerals (e.g.
Berner, 1969; Jenkyns, 1971). The source of iron (Fe) in
these rocks is particularly enigmatic, given the low solu-
bility of Fe in modern oxic seawater (e.g. Kraemer, 2004;
Raiswell & Canfield, 2012; Worsfold et al., 2014). The
particular geological setting suggests two possibilities
for this source. First, the opening of Tethys was associ-
ated with seafloor spreading, leading to the suggestion
of a hydrothermal source (e.g. Halliday & Mitchell, 1984;
Holz, 2015; Scotese & Schettino, 2017). Second, a tropical
climate may have caused enhanced weathering, suggest-
ing continental Fe as another possible source (e.g. Don-
nadieu et al., 2006; Gehring, 1986a; Holz, 2015). Local
enrichment of Fe and its incorporation into sediments is
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often associated with microbial activity, leading to locally
reducing conditions within sediment porewaters and the
mobilization of Fe in its reduced state (e.g. Dahanayake
& Krumbein, 1986; Gehring, 1986b; Préat et al., 2008).
Hence, irrespective of the source of Fe, redox related
Fe cycling may have been involved in the formation of
these iron-rich condensed sequences (e.g. Dahanayake
& Krumbein, 1986; Gehring, 1985, 1986b; Glasauer et al.,
2013; Kennedy et al., 2003; Salama et al., 2013).

Iron oolites are characteristic Fe-rich condensed sedi-
ments of Middle Jurassic age, and are widely distributed
across Europe (e.g. Collin et al.,, 2005; Gehring, 1989).
Iron oolites mainly represent condensed sequences, with
low detrital sediment supply and low net sedimentation,
that have formed in a shallow-marine setting (e.g. Bur-
khalter, 1995; Clement et al., 2020; Dollfus, 1961; Follmi,
2016; Heikoop et al., 1996). Iron ooid formation and ooid
sedimentation may geographically coincide, but sedimen-
tary redistribution of iron ooids has also been suggested
to occur (autochthonous and allochthonous iron oolites,
respectively; e.g. Bhattacharyya & Kakimoto, 1982; Brun-
ner, 1999; Harder, 1978; Siehl & Thein, 1989). Iron ooid
formation today is restricted to isolated environments,
so that it remains unclear how Fe-rich ooids could form
pervasively in the Jurassic. Modern iron ooids are known
from volcanic settings, in Mahengetang, Indonesia (less
than 4.5 ka; Heikoop et al., 1996), and Panarea Island,
Italy (actively forming; Di Bella et al., 2019), suggesting a
hydrothermal Fe source for both deposits. No evidence
for microbially-mediated Fe cycling has been found for
these modern iron ooids but it cannot be excluded.

In this study we seek to test the two aforementioned
hypotheses for the origin of Fe in Middle to lowermost
Upper Jurassic iron-rich sedimentary rocks. We use a
variety of geochemical tools, including radiogenic Nd
(M3Nd/MNd), Sr (¥Sr/%Sr) and stable Fe isotope varia-
tions (8°°Fe), to investigate the origin of Fe in Tethyan iron
oolites and their ooid constituents. Contrasting with sta-
ble Fe isotope compositions, radiogenic Nd and Sr com-
position can provide robust information on fluid sources
involved in the formation of marine sedimentary phases.

2 Studied iron oolites

Three iron oolite dominated condensed successions of
Middle to earliest Late Jurassic age were studied, deriving
from two different paleo-depositional realms: the iron
oolites from Herznach (Herznach Member, Ifenthal
Formation) were deposited on the Jura platform, while
the Blegi Iron Oolite from Windgillen (Reischiben
Formation) and the Planplatte Iron Oolite from Erzegg
(Erzegg Formation) formed on the northern Tethyan
shelf of the Helvetics (Fig. 1). Detailed information about
the sampling locations is given in Table 1.
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2.1 Iron oolites from Herznach

The Herznach region lies at the southern margin of the
Tabular Jura Mountains in northwestern Switzerland
(Diebold et al.,, 2005, 2006). Post-depositional burial
temperatures prevailing in the area barely exceeded
100 °C (Frei, 1952; Gehring & Heller, 1989; Mazurek et al.,
2006). Higher burial temperatures of 110-120 °C were
recently reported for Late Jurassic to Early Cretaceous
dolomite veins (Looser et al., 2019), but whether these
temperatures affected the Middle to lowermost Upper
Jurassic iron oolites remains unclear. The Middle Jurassic
succession in the Jura Mountains consists of several
formations containing condensed iron oolite horizons
(e.g. Bitterli-Dreher, 2012; Burkhalter, 1996). The studied
iron oolite horizons of the Sissach Member (Passwang
Formation) and of the Herznach Member (Ifenthal
Formation) both represent the top of a shallowing
upward succession (e.g. Bitterli-Dreher, 2012; Blasi, 1987;
Burkhalter, 1996; Gygi, 2000; Fig. 2). The deposition of
the lower Passwang Formation (Early Aalenian to Early
Bajocian) was influenced by sea level fluctuations and
subsidence, which resulted in the formation of siliciclastic
and carbonate rocks, and iron oolite horizons at the
top of most sequences (Burkhalter, 1996). The Sissach
Member has a thickness of 5-15 m that accumulated in
less than 3 Ma (Early to Middle Aalenian; Burkhalter,
1996; Diebold et al., 2006) and is considered a condensed
sequence in the sense of Jenkyns (1971).

The iron oolite of the Herznach Member is a thin
succession of iron oolitic marls and limestones of the
Ifenthal Formation (e.g. Bitterli-Dreher, 2012; Gygi, 2000;
Fig. 2). Syn-sedimentary tectonics resulted in a seafloor

[ Jura Mountains [] Helvetic [ southalpine
[] Molasse Basin ] Penninic [ Bergell Intrusion
[ Prealpes [_] Austroalpine s INSUbIC Line

Fig. 1 Tectonic map of Switzerland with the three studied iron oolite
deposits indicated by white stars. H=Herznach, WG =Windgéllen
and EE =Erzegg. Sample coordinates are given in Table 1. Modified
after Federal Office of Topography swisstopo (2005)
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Table 1 Overview of the investigated iron oolite samples from Herznach (H), Windgallen (WG) and the Erzegg profile (EE-P)

Sample No Coordinates Lithostratigraphy Stage / Age Age (Ma) Age (Ma)
(CH1903 +/ LV95) Gradstein etal. (2012)  Gradstein et al. (2020)
H1 2'643'884/17258/595 Herznach Member (Ifenthal Fm) E. Cl-E. Oxf 164.79-160.84 163.67-159.10
H2 2/6457223/1'260076  Sissach Member (Passwang Fm) E. Aal.-M. Aal 173.14-170.83 173.70-171.50
WG1 2'699'640/1/183’840  Blegi Iron Oolite (Reischiben Fm) L.Bj—E.Cl 169.45-164.63 169.74-163.47
WG3 2/698/953/1/183'704  Blegi Iron Oolite (Reischiben Fm) L.Bj—E.Cl 169.45-164.63 169.74-163.47
EE-P4 to EE-P33  2/665/372/1/178'988  Planplatte Iron Oolite (Erzegg Fm) ~ E.Cl-M.Cl 166.07-163.97 165.29-162.65

The lithostratigraphy indicates the mappable units given in the geological maps

Fm Formation, E. Early, M. Middle, L. Late, Cl. Callovian, Oxf. Oxfordian, Aal. Aalenian, Bj. Bajocian. All ages used in this study are after Gradstein et al. (2012)
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Fig. 2 Stratigraphic profile of the eastern Jura Mountains and the autochthonous sediment cover of the Aar Massif. Formation names in bold
indicate the studied iron oolite deposits. The Herznach area corresponds to the eastern facies type of the Jura Mountains; the Windgallen area to
the northern facies type (autochthonous), and the Erzegg area to the intermediate facies type of the Axen nappe. The sediment thickness increases
towards more southerly paleopositions in the Aar Massif, which is most likely due to increased subsidence in southern regions (Gisler et al., 2020).
Modified after Diebold et al. (2005, 2006), Gisler and Spillmann (2011), Gisler et al. (2020), Wohlwend et al. (2022)

structure characterized by oceanic highs and lows
(Bitterli, 1977; Gygi, 2000). The rich ammonite fauna
suggests a late Early Callovian to late Early Oxfordian

age for the member (e.g. Bitterli-Dreher, 2012; Gygi,
1981; Gygi & Marchand, 1982; Jeannet, 1951). With a
maximum thickness of 5-6 m (Bitterli-Dreher, 2012),
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which accumulated in around 4 million vyears, the
Herznach Member is also a condensed sequence. Iron
has been suggested to derive from lateritic weathering
of adjacent continental areas (Gygi, 1981), and has been
suggested to have been mobilized and locally enriched by
microbial activity (Gehring, 1985; Glasauer et al., 2013).
Remnants of microbial iron enrichment processes within
the ooids are documented in cortical layering of ramified
um-sized structures of biological origin (Figs. 3A and B).
The iron oolites from Herznach consist of poorly sorted
iron ooids, which are often shattered and act as nucleii for
other ooids, indicating that this process occurred during
the formation of the iron ooids. Ooids with a nucleus
made of either tiny quartz crystals or calcite fragments
are also found (Biihler, 1986). The various cores are
surrounded by concentric layers of limonite or chamosite
(Bithler, 1986), goethite and apatite (e.g. Burkhalter,
1995; Gehring, 1985, 1986a) or limonite and hematite
(Bodmer, 1978). Only small amounts of pyrite have been
found (0.1-0.3%; Biihler, 1986). Other frequently found
minerals in the iron oolite deposits from Herznach are,
in order of decreasing abundance, calcite, celestine,
dolomite, gypsum and sphalerite (Frei, 1952).

2.2 BlegiIron Oolite from Windgallen

The Blegi Iron Oolite from Windgéllen is a subordinate
member of the Reischiben Formation (Briickner & Zbin-
den, 1987; Hantke and Briickner, 2011). It is composed
of chamosite ooids embedded in a micritic limestone
matrix (Déverin, 1945; Dollfus, 1965; Hianni, 1999). The
iron oolite also contains clay detritus with areas of cha-
mosite and pyrite crystals, as well as some fossils such
as ammonites, belemnoids, bivalves, small gastropods,
foraminifera and bryozoa (Déverin, 1945). The age of the
Blegi Iron Oolite has been constrained using the ammo-
nite fauna, which suggests stratigraphic ages of Late
Bajocian to Early Callovian (e.g. Dollfus, 1961). The Blegi
Iron Oolite has a maximal thickness of 3.5 m, accumu-
lated over about 5 Myr (Dollfus, 1965), and is therefore
also a condensed sequence. Despite its small thickness,
the Blegi Iron Oolite is prominent in the Windgéllen area
(Fig. 3E). The deposition of the sediments containing the
Blegi Iron Oolite was controlled by syn-sedimentary tec-
tonics (Dollfus, 1965; Triimpy, 1949; Ziegler, 1993). In
Early Jurassic times, the Windgillen depositional site was
located in a continental setting on the Alemannic Land,
the Windgéllen Ridge (Triimpy, 1949). Marine transgres-
sion affected the Windgéllen Ridge only in Late Bajocian
times, which is expressed in the absence of the entire Tri-
assic, and Lower Jurassic strata in the region (e.g. Doll-
fus, 1965; Fig. 2). The iron ooids formed on the flooded
Windgallen Ridge, a pelagic rise, at depths greater than
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the wave base and therefore in a tranquil setting (e.g.
Kugler, 1987). Temperature and pressure conditions in
the Windgéllen region exceeded those at Herznach, with
maximal temperatures of 305-410 °C and pressures of
2.1 £ 0.7 kbar (Schenker, 1980, 1986). Intense two-phase
folding related to the Windgillen anticline resulted in
ooid deformation and new mineral growth, including
the decomposition of chamosite ooids and the formation
of new plagioclase, quartz and magnetite (Heim, 1878;
Déverin, 1945; Baker, 1964; Tan, 1976; Rothlisberger,
1990; Burkhard, 1999; Hantke and Briickner, 2011;
Fig. 3C).

2.3 Planplatte Iron Oolite from Erzegg

The Upper Bajocian to Lower Oxfordian Erzegg
Formation consists of a thick succession of marl and clay
schists (Brunner, 1999; Gisler et al., 2020; Staeger et al.,
2020; Trohler, 1966; Fig. 4). The strongly Fe-impregnated
marls show an interval with rare, laterally discontinuous
intercalations of iron oolites (Brunner, 1999), the
informally-named Planplatte Iron Oolite of Early to
Middle Callovian age (Gisler et al., 2020; Trohler,
1966). The Planplatte Iron Oolite is a few meters thick
and crops out over a length of about 6 km, extending
from the Erzegg in the east, over the Balmeregghorn,
to the Planplatte in the west (Brunner, 1999; Trohler,
1966; Fig. 3F). The iron ooids initially likely formed in a
shallow-marine setting, where iron enrichment may have
occurred in a reducing milieu at the sediment—water
interface (Brunner, 1999). Iron ooids formed in slightly
agitated waters in a clay-rich sediment. Occasional
storm events shattered the iron ooids and transported
them to the south into deeper and more argillaceous
environments. Those iron oolitic claystones were later
transformed into the schists of the Erzegg Formation
(Brunner, 1999). This allochthonous origin of iron ooids
of the Planplatte Iron Oolite (Brunner, 1999; Trohler,
1966) contrasts with the autochthonous iron ooid
formation of the Blegi Iron Oolite.

Typical minerals found in the Planplatte Iron Oolite are
goethite, chamosite, calcite, clays, hematite, magnetite,
siderite, dolomite, quartz, pyrite and muscovite (Trohler,
1966). The core of the iron ooids are either broken ooids,
several ooids (polyooid) or chamositic fragments of
echinoderms (Brunner, 1999; Trohler, 1966; Fig. 3D).
The ooids themselves consist of goethite or chamosite
(Brunner, 1999; Trohler, 1966), but apatite has also been
reported in the ooid cortex (Brunner, 1999). The clay
minerals are believed to be mainly of detrital origin, but
diagenetic formation is also possible (Trohler, 1966).
Angular to sub-rounded quartz grains in the matrix sup-
port the concept of detrital input and proximal sedimen-
tation. The Erzegg area has been less affected by Alpine
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Fig. 3 A Principal component map and B Fe/C-ratio map of iron oolite sample from Herznach (H1), showing concentric layering of the iron ooid. C
Magnetite cubes growing at the expense of flattened green chamositic iron ooids related to the Windgallen folding events (WG6). D Poorly sorted
iron ooids with broken ooid fragments or polyooid as ooid nuclei document ooid transportation processes in the iron oolites from Erzegg (EE-P1). E
View from Unteres Furggeli to the eastern Windgallen region. The black Blegi Iron Oolite band (marked red) is clearly visible in the field. F Sampled
profile at Erzegg, with interlayers of iron oolite and marls with clay schists (see profile in Fig. 4)
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Fig. 4 Schematic sampled stratigraphic profile at Erzegg, showing the succession of clay schists and iron oolite with marl layers, elemental
concentrations, and isotope compositions of the reductive leachates of iron oolites (for data see Tables 2, 4)

metamorphism than the Windgillen, with maximum
temperature conditions of 250 °C at pressures of about
2 kbar (Berger et al., 2017; Frey et al,, 1980; Herwegh
etal., 2017).

3 Sampling and methods

We sampled two iron oolite horizons from Herznach
(Herznach Member and Sissach Member), one from
Windgallen (Blegi Iron Oolite) and several horizons of a
detailed stratigraphic section of the Erzegg Formation at
Erzegg (Table 1).

Neodymium, strontium and iron isotope compositions
were measured on leached iron oolite samples from
Herznach, Windgéllen and Erzegg. Representative rock
samples of each outcrop were collected and sawn into
small blocks, avoiding weathered or fractured material
and targeting representative portions in terms of ooid
abundance. Appropriate rock cubes were hydraulically
crushed and subsequently ground in an agate mill
These powders were reductively leached in the clean

lab facilities at ETH Ziirich, targeting authigenic
sedimentary Fe-phases (Blaser et al., 2016). Rock
powders (40-60 mg) were reacted with 5 ml of 1.5%
acetic acid, 0.005 M hydroxylamine hydrochloride and
0.003 M EDTA (buffered to pH~4 with ammonia) for
30 min on a vortex shaker. After centrifugation, 4 ml of
the supernatant leach solution was pipetted off and dried
down. The leachates were subsequently fluxed with 1 ml
of concentrated HNO; for at least 12 h. Sample stock
solutions were prepared in 2 M HNO, or 6 M HCI.
Elemental concentrations in the leachates were
measured using a Thermo-Fisher Element XR ICP-MS
at ETH Zirich, as described by Vance et al. (2016).
Dilute stock solutions were run in 2% HNO; doped with
1 ppb In for internal normalization. Concentrations
were calculated relative to an in-house standard. Two
secondary standards were run to assess precision and
accuracy of the reported concentrations: NRC Canada
river standard SLRS-6, and the USGS shale standard
SGR-1. Accuracy of the reported concentration data



Continental weathering as the source of iron

Page 7 of 17 4

Table 2 Elemental concentrations of the reductive leachates of iron oolites

Sample Ca (wt.%) Fe (wt.%) Al (ppm) Nd (ppm) Sr (ppm) Ca/Fe (molar)
H1 129 0.30 201 311 72.7 60
H2 28.8 1.02 120 7.37 476 39
WG1 5.04 267 146 1.88 55.7 26
WG3 154 1.20 109 453 257 18
EE-P4 0.18 0.19 677 218 13.8 13
EE-P6 109 1.10 340 3.66 460 14
EE-P7 3.52 1.08 353 212 278 46
EE-P9 3.67 2.01 352 3.1 124 2.5
EE-P12 15.2 1.09 484 520 370 19
EE-P18 7.7 1.10 226 337 220 9.0
EE-P20 9.87 1.32 515 391 283 11
EE-P22 116 0.96 369 4.50 350 17
EE-P23 0.95 017 1150 161 211 7.9
EE-P26 10.8 0.85 270 5.82 216 18
EE-P28 14.0 1.60 448 553 313 12
EE-P30 14.0 0.29 649 6.02 314 67
EE-P31 16.4 0.56 1264 8.44 388 40
EE-P32 8.34 0.27 954 3.74 203 43
EE-P33 12.0 0.28 847 6.61 276 61

Concentrations are given as leached element per mass of original sample prior to leaching. Concentrations are from Element runs, except for isotope dilution-based
Nd concentrations (Sect. 3). Measurement uncertainty corresponds to 5% for Ca, Fe, Al and Sr and to 1% for Nd (1 SD)

(versus certified or literature values) ranges between 2
and 13%, precision is better than 5% (1 SD, Table 2).

Based on Nd concentrations from the Element runs,
aliquots of the leachates were spiked with appropriate
amounts of a mixed '**Sm/"*°Nd spike. Strontium and
rare earth elements (REE) were separated from matrix
elements and each other on cation resin (AG 50W-X8,
200-400 mesh, 1 ml resin bed). Neodymium and Sm
were subsequently isolated from each other and all other
REEs on LN spec resin in dilute HCI (50-100 um, 0.3 ml
resin bed; Pin & Zalduegui, 1997). Strontium was further
purified on Sr spec resin (50-100 pm, 0.1 ml resin bed;
Deniel & Pin, 2001).

Iron isotope compositions were obtained for a selec-
tion of seven sample leachates of the three studied
iron oolite lithologies (Table 4). A sample aliquot con-
taining 1 pg of Fe was spiked with a >’Fe->Fe double
spike (to achieve a sample/spike ratio of ~1) and pro-
cessed through an anion column containing AG-MP-
1M resin. The matrix and Cu were eluted in 7 M HCI
with trace peroxide, prior to the elution of Fe in 1 M
HCI. For all isotope measurements, the purified ele-
ments were fluxed in 14.5 M HNO,; with 30% hydrogen
peroxide (ratio 9:1, 1 ml solution) to oxidize organic
compounds deriving from the resins. Iron procedural
blanks (<0.1 ng) were insignificant compared to pro-
cessed sample Fe.

Neodymium, Sr and Fe isotopes, as well as spiked Sm
isotope ratios, were measured individually on a Thermo-
Fisher Neptune Plus MC-ICP-MS. Instrumental mass
bias correction followed Vance and Thirlwall (2002) for
Nd and Thirlwall (1991) for Sr, using a *Sr/*®Sr ratio of
0.1194. Neodymium and Sr isotope compositions were
renormalized to the accepted literature values of La Jolla
and NIST SRM 987 (Thirlwall, 1991). Repeated standard
measurements during each session yielded external error
estimates < 15 ppm for **Nd/***Nd (2 SD) and < 14 ppm
for 87Sr/%8Sr (2 SD). Samples were mostly run at similar
concentrations as standards, yielding similar internal
errors for both (Tables 3 and 4). Procedural blanks
were <30 pg for Nd and Sr and <10 pg for Sm and were
negligible compared to sample sizes.

Measured radiogenic Nd and Sr isotope composi-
tions were corrected for ingrowth of **Nd and ¥'Sr,
respectively, since their time of formation (e.g. Faure &
Mensing, 2005, and references therein) using biostrati-
graphic age constraints (see Sect. 2). The age uncertainty
of the studied iron oolites has little effect on these cor-
rections, less than the uncertainty on the measurements.
Therefore, an intermediate age was used for all samples
at one location (Tables 3 and 4). Age corrections on
3Nd used Sm/Nd ratios from isotope dilution, that are
associated with uncertainties <1%o. The uncertainty on
Rb/Sr ratios measured on the Element was conservatively
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Table 3 Strontium isotope compositions for the reductive leachates of iron oolites

S. Schunck et al.

Sample Age (Ma) 875r/86Sr (measured) 2 SEM 87Rb/%6sr 875r/86Sr (initial) 2SD

H1 163 0.707336 0.000010 0.0077 0707318 0.000013
H2 172 0.707266 0.000011 0.0017 0.707262 0.000013
WGT 167 0.712245 0.000012 0.0036 0.712237 0.000013
WG3 167 0.711407 0.000010 00018 0.711402 0.000013
EE-P6 165 0.709685 0.000010 0.0015 0.709682 0.000013
EE-P9 165 0.709657 0.000008 0.0600 0.709518 0.000019
EE-P12 165 0.709360 0.000009 0.0005 0.709359 0.000013
EE-P18 165 0.709722 0.000010 0.0003 0.709721 0.000013
EE-P20 165 0.709486 0.000009 0.0003 0.709486 0.000013
EE-P22 165 0.709700 0.000009 0.0002 0.709700 0.000013
EE-P26 165 0.709159 0.000010 0.0006 0.709158 0.000013
EE-P28 165 0.709521 0.000010 0.0003 0.709520 0.000013
EE-P30 165 0.709093 0.000009 0.0040 0.709084 0.000013
EE-P31 165 0.709558 0.000010 00122 0.709530 0.000013
EE-P32 165 0.709320 0.000010 0.0392 0.709229 0.000016
EE-P33 165 0.709914 0.000010 0.0304 0.709844 0.000015

Uncertainties on the measured isotope ratios reflect internal errors of the mass spectrometric runs (2 SEM). Uncertainty on the initial ratios combine uncertainties in
the age correction with an external error estimate of the measured &Sr/%Sr ratios (Sect. 3)

Table 4 Neodymium and iron isotope compositions for the reductive leachates of iron oolites

Sample  Age (Ma) 143Nd/"4Nd 2 SEM 475m/1*Nd  eNd 2SEM  &°°Fe (%o) 2SEM (%0)  &°°Fe (%o)
(measured) (initial) (measured) (authigenic)

H1 163 0.512222 0.000005 0.1625 — 74 0.11 — 144 0.03 —149
H2 172 0512114 0.000005 0.1156 — 844 0.09 — 094 0.05 — 095
WG1 167 0512139 0.000005 0.1651 —9.07 0.10 — 083 0.04 — 083
WG3 167 0512134 0.000004 0.1343 —850 0.08 —082 003 —082
EE-P4 165 0512226 0.000004 0.1860 — 781 0.08 - - -
EE-P6 165 0.512179 0.000004 0.1416 —7.80 0.08 - - -
EE-P7 165 0512181 0.000005 0.1567 — 8.08 0.09 - - -
EE-P9 165 0512186 0.000005 0.1474 —7.79 0.09 —0.71 0.04 —0.72
EE-P12 165 0512164 0.000004 0.1220 — 768 0.08 - - -
EE-P18 165 0512183 0.000004 0.1481 — 7.86 0.08 —0.65 0.04 — 0.66
EE-P20 165 0.512182 0.000004 0.1350 —759 0.08 - - -
EE-P22 165 0512173 0.000005 0.1511 — 811 0.09 - - -
EE-P23 165 0512153 0.000005 0.2267 —10.10 0.10 - - -
EE-P26 165 0.512197 0.000005 0.1311 —723 0.10 - - -
EE-P28 165 0512151 0.000004 0.1131 —7.75 0.08 —0.56 0.02 —0.57
EE-P30 165 0512147 0.000004 0.1438 — 847 0.08 - - -
EE-P31 165 0512142 0.000005 0.1264 —8.20 0.09 - - -
EE-P32 165 0512117 0.000004 0.1327 — 881 0.08 - - -
EE-P33 165 0512109 0.000004 0.1353 —9.03 0.08 - - -

External errors on eNd correspond to 0.15 epsilon-units and to < 1%o for '¥Sm/'"*Nd (Sect. 3). Measured Fe isotope compositions are, for most samples, averages
of two analyses, with an external uncertainty of & 0.08%o (2 SD, Sect. 3). Authigenic Fe isotope compositions reflect measured compositions corrected for detrital

contributions (Sect. 4)
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estimated to be 10%. This uncertainty was propagated
through the age correction. Samples with elevated Rb/Sr
were not processed for Sr isotope compositions. Maxi-
mal uncertainties on the age corrected ¥Sr/%Sr ratio
correspond to less than 2 - 107>, Neodymium isotope
compositions are reported in epsilon-notation relative to
the Chondritic Uniform Reservoir (CHUR) at the time
of sediment formation. The CHUR has a present-day
3Nd/"Nd ratio of 0.512638 and '*’Sm/"*Nd of 0.1967
(Jacobsen & Wasserburg, 1980).

Iron isotopic compositions, §°°Fe, are reported in delta
notation relative to the standard IRMM-014, with an
uncertainty of & 0.08%o (2 SD) based on the long-term
reproducibility of secondary standard NIST-3126 (Sun
et al,, 2021).

4 Results
The analyzed iron oolites consist of authigenic iron
and carbonate minerals as well as detrital silicates (see
Sect. 2). Success in selectively leaching the key phases of
interest, authigenic iron minerals, can be assessed using
elemental concentrations (Table 2). More specifically, we
use Fe to track the leaching of iron minerals, Ca for car-
bonates, and Al for detritus (see discussion in Sect. 5.1).
The iron oolite leachates from Herznach, Windgéllen and
Erzegg yield molar Ca/Fe ratios between 1 and 67 and
Fe/Al ratios between 1 and 88. Al/Nd ratios were usually
below 900.

Initial Sr isotope ratios at the time of formation of the
iron oolites are more radiogenic than contemporary

A
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-6.5 Windgallen
Erzegg
-7.0
|
75 A
-8.0 =
Z 2 =0.0968
-8.5 A
m
-9.0
-9.5
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-10.0 &
-10.5
0 10 20 30 40 50 60 70 80

Cal/Fe (molar)
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seawater (Table 3), yielding 0.707290 + 0.000013 (n=2),
0.711820 £+ 0.000013 (n=2) and 0.709486 + 0.000014
(n=12) for Herznach, Windgéllen and Erzegg, respectively.
Initial eNd range between — 9 and — 7 except for sample
EE-P23 (eNd=— 10.1). Measured 8°°Fe are between — 1.5
and — 0.6%o (Table 4). Authigenic Fe isotope compositions,
corrected for detrital contributions, are marginally different
from measured Fe isotope compositions (<0.05%o; Table 4).
These detrital corrections are based on three assumptions:
(i) all sample Al is detrital, (ii) detrital contributions
have a Fe/Al ratio like the continental crust (mass ratio
of ~0.481; Rudnick et al., 2003) and (iii) a crustal Fe isotope
composition (0.1%o; Beard et al., 2003).

5 Discussion

5.1 Limitations of the leaching approach

The iron oolites are composed mainly of a carbonate
fraction and of iron ooids. It is therefore possible that the
carbonate and the ooids carry different radiogenic isotope
signatures if, for instance, the carbonate reflects mostly
marine carbonate shells, while the iron ooids formed
during mixing of hydrothermal fluids and seawater. Such
a formation process has been suggested for modern iron
ooids at Panarea in the Tyrrhenian Sea (Di Bella et al,,
2019). The reductive leach used here was applied prior
to carbonate removal to avoid leaching detrital material
(Blaser et al., 2016). Although this resulted in generally
low Al/Nd ratios (<900 molar ratio, < 170 mass ratio; see
Sect. 5.3), it failed to isolate a strongly Fe-enriched phase
given Ca/Fe ratios of 1-67 (Table 2; Fig. 5A). However,

B
-6.0
=]
2 A Herznach
-6.5 2 Windgallen
.§| Erzegg
-7.0 2
75 N
n' ‘I
g 20 ©=0.0010
w
-8.5 A I
-9.0 |
-9.5
| EE-P23
-10.0
4105 1

18 20 22 24 26 28 30 32 34 36 38
log(AI/Nd)

Fig.5 Leached Nd isotope composition vs. leached A Ca/Fe and B Al/Nd ratios. The solid blue lines are linear regressions to the data with
calculated coefficients of determination (r2). The linear regression model excluded the clay-dominated sample EE-P23. The dashed black line in B
depicts the Al/Nd threshold of ~ 535 as an indication of authigenic Nd isotope signatures (Huang et al.,, 2021). The lack of correlation between eNd
and Ca/Fe suggests that Fe-rich sediment phases (e.g. goethite, chamosite) are not isotopically distinct from Ca-rich phases (e.g. calcite, dolomite).
Similarly, the lack of correlation between eNd and Al/Nd suggests that the authigenic phases extracted by leaching are not contaminated by

detrital contributions
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there is no correlation between leached Ca/Fe ratios and
Nd isotope compositions (Fig. 5A). Thus, though isotope
variations between Fe-rich and Ca-rich portions of the
iron oolites cannot be completely ruled out, it seems
rather unlikely.

5.2 Potential for metamorphic overprinting of strontium
isotope compositions

Initial Sr isotope ratios at the time of formation of the
iron oolites are more radiogenic than seawater at that
time (Table 3; Fig. 6) yielding 0.707290 &+ 0.000013 (n=2),
0.711820 + 0.000013 (n=2) and 0.709486 + 0.000014
(n=12) for Herznach, Windgillen and Erzegg,
respectively. These offsets are most likely explained
either by: (i) Sr isotope variability in coastal seawater
at that time; (ii) allochthonous iron ooid formation on
land and later transportation to the depositional basin
or; (iii) post-sedimentary overprinting of Sr isotope
compositions due to metamorphic fluids.

Due to the long residence time of Sr in seawater
of ~3 Ma, significant isotopic variability is not expected

A Herznach
Windgallen
Erzegg
~Z Seawater Srisotope record
/" with 95% confidence limits,
Wierzbowski et al. (2017)

0.7074

87Sr/%6Gr

0.7073 1

0.7072

0.7071

0.7070

0.7069

0.7068
175 170 165 160 155 150 145 140

Age (Ma)
[T Aal [Bji[Bt.] Cl.] Oxf. [ Kimm. [ Tith. [ Berri. |

Fig. 6 Reductively leached Srisotope compositions of the Swiss
iron oolites from Herznach, Windgallen and Erzegg compared to the
Jurassic seawater Srisotope curve (with a 95% confidence interval;
Wierzbowski et al,, 2017). Leached Sr isotopes are more radiogenic
than contemporary seawater due to metamorphic overprint

(Sect. 5.2). Error bars on ages reflect available age constraints (see
Tables 1 and 3). Ages after Gradstein et al. (2012). Aal. Aalenian,

Bj. Bajocian, Bt. Bathonian, Cl. Callovian, Oxf. Oxfordian, Kimm.
Kimmeridgian, Tith. Tithonian, Berri. Berriasian
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(e.g. Hodell et al., 1990). Previous work has shown that
the Sr isotope signature in coastal areas can deviate from
the global open marine signature by up to about 0.00025
(e.g. El Meknassi et al., 2018, 2020; Huang et al., 2011;
Ingram & Sloan, 1992). Such local offsets may be related
to river runoff, which is isotopically highly variable (e.g.
Pearce et al, 2015), or, although this seems less likely
based on global Sr budgets (e.g. Paytan et al., 2021), to
groundwater or diagenetic Sr fluxes. The offsets from
contemporary seawater observed at Windgillen and
Erzegg are, however, much larger, on the order of ~0.002
to~0.005. Such offsets could only be explained if the sed-
iments were formed in highly restricted basins, which is
inconsistent with paleogeographic reconstructions (e.g.
Scotese & Schettino, 2017; van Hinsbergen et al., 2020;
Ziegler, 1993).

A continental origin of iron ooids has previously been
proposed for the Paris Basin, where iron ooids may
have been derived from latosols (Siehl & Thein, 1989).
In Swiss iron oolites, the presence of fragmented iron
ooids also imply transportation processes (e.g. Brunner,
1999; Gehring, 1989; Fig. 3D). However, such processes
can also occur in marine environments affected by strong
ocean currents (e.g. Gehring, 1989; Rais et al., 2007).
Although a continental origin of the iron ooids cannot be
fully precluded, it seems unlikely. Therefore, the radio-
genic Sr isotope compositions of the studied Swiss iron
oolites point to a metamorphic, fluid-related overprint,
although marine Sr isotope signatures have been meas-
ured in some marine sediments in the region (Dolden-
horn; Burkhard & Kerrich, 1990).

The studied Swiss iron oolites experienced different
metamorphic pressures and temperatures (see Sect. 2).
The Sr isotope system is known to be more susceptible to
metamorphic alteration than Nd (Hradetzky & Lippolt,
1993; Jenkin et al., 2001; Schaltegger et al., 1994). Meta-
morphic fluids, usually radiogenic in Sr, are preferentially
focused along thrusts where they affect adjacent rocks
within a few meters to a few hundred meters (e.g. Bur-
khard & Kerrich, 1990; Burkhard et al., 1992; Hradetzky
& Lippolt, 1993; Huon et al., 1994; Kirschner et al., 1999,
2003). Remnants of metamorphic fluids are documented
from fluid inclusion studies for the Erzegg and Windgal-
len (e.g. Miron et al., 2013; Mullis et al., 1994). Whether
the chamosite decomposition in the Windgillen was
associated with metamorphic fluids is unclear (Déverin,
1945). Thrusting is documented in the vicinity of the iron
oolites from Herznach, Windgallen and Erzegg (Briickner
& Zbinden, 1987; Diebold et al., 2005, 2006; Gisler et al.,
2020; Hantke and Briickner, 2011; Staeger et al., 2020), so
that Sr isotope compositions have likely been altered.
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Fig. 7 Authigenic Nd isotope composition of the iron oolites from
Herznach, Windgallen and Erzegg compared to the Tethyan Jurassic
seawater Nd isotope curve (Dera et al,, 2015) and proximal basins.
Leached compositions are consistent with contemporary seawater,
providing no evidence for the involvement of hydrothermal fluids.
Error bars on ages reflect available age constraints (see Tables 1

and 4). Ages after Gradstein et al. (2012). Hett. Hettangian, Sine.
Sinemurian, Pliensb. Pliensbachian, Aal. Aalenian, Bj. Bajocian, Bt.
Bathonian, Cl. Callovian, Oxf. Oxfordian, Kimm. Kimmeridgian, Tith.
Tithonian

5.3 Neodymium isotope compositions

There is no universally applicable approach for the
identification of significant detrital contributions to
authigenic Nd, given the diversity of depositional
environments and diagenetic processes. A threshold
ratio for unaffected authigenic Nd isotope signatures
has been suggested for Quaternary marine sediments
corresponding to a molar Al/Nd ratio of ~ 535 (mass ratio
of 100; Huang et al., 2021). Apart from a few samples
(EE-P4, EE-P23 and EE-P32), the leachates show Al/Nd
ratios close to this threshold (Fig. 5B). Sample EE-P23
is a clay-dominated sample, which produced a distinctly
high Al/Nd ratio and a low eNd of — 10.1, implying that
this signature may not be fully authigenic. All further Nd
isotope compositions of the iron oolites from Herznach,
Windgillen and Erzegg are similar and range between
— 9 and — 7, likely reflecting contemporary seawater
(Fig. 7; Dera et al, 2015). In addition, leached Nd
isotopes are not correlated with Al/Nd ratios, suggesting
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that detrital Nd does not affect the authigenic signatures
(Fig. 5B).

These low Nd isotope compositions do not argue
for the involvement of hydrothermal fluids in the
formation of iron oolites. Indeed, they are similar to
previous reconstructions of seawater signatures in
the Middle Jurassic Tethys (Dera et al., 2015). Slight
variations in eNd between samples are consistent
with generally open depositional basins and can, for
instance, be explained by isotopically different fluvial
Nd inputs (Dera et al., 2015). Comparable conclusions
have already been drawn for the Late Jurassic Swabian
epicontinental basin, opening southward into the
Helvetic facies belt (e.g. Olivier & Boyet, 2006; Stille
& Fischer, 1990), and for Early Jurassic sediments of
the Paris Basin (e.g. Dera et al., 2009; Fig. 7). Such an
open basin model also suggests that the seawater was
oxygenated, as is also documented by the rich fauna
in iron oolites (e.g. Dollfus, 1961; Gygi, 2000). Overall,
the authigenic neodymium isotope signatures in the
studied iron oolites are crustal, and do not provide
evidence for significant hydrothermal contributions of
Nd. A riverine source of iron, derived from weathering
of the adjacent hinterland, has also been proposed by
other studies (e.g. Baioumy et al., 2017; Chowns, 1966;
Gehring, 1986a; Li et al., 2021).

5.4 Iron isotope compositions

Iron supplied with the sediment load of rivers must be
locally enriched to form Fe-rich condensed sequences.
Elevated organic matter contents are often associated
with iron-rich sediments (e.g. Lalonde et al., 2012), sup-
porting the concept that Fe reduction may occur in
restricted environments with oxygen depletion. Gehring
(1985) proposed an iron ooid formation model in the
vicinity of organic matter. Such an involvement of
microbes in iron cycling should be reflected in iron iso-
tope compositions. Microbially-mediated Fe(III) reduc-
tion preferentially utilizes the light **Fe compared to *°Fe
(Beard et al., 1999; Ellwood et al., 2015), resulting in low
8°°Fe values, usually lower than average crustal rocks
with 8°°Fe of 0.1%o (Beard et al., 2003).

The light 8°°Fe isotope values, between — 1.49 and
— 0.57%o, of the iron oolites are consistent with the
involvement of microbial processes. Based on Nd iso-
topes, this Fe is likely supplied by rivers. Detrital Fe
transported by rivers is expected to have an Fe isotope
signature similar to that of average crustal rocks (0.1%o;
Beard et al., 2003). Reductive dissolution of sedimentary
Fe involving microbial processes would release isotopi-
cally light Fe to pore waters, subsequently incorporated
into iron ooids. However, it remains unclear whether a
locally reductive milieu is a general feature of the “ooid
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factory” or if reduction is restricted to the iron ooids
themselves, since remnants of microbial structures inside
the ooids are ambiguous (Burkhalter, 1995; Dahanayake
& Krumbein, 1986; Gehring, 1986b).

5.5 Iron oolite formation model

Sedimentary condensation tends to occur on
topographic highs and in an active hydrodynamic
regime, where the accumulation rate is low due to
processes such as winnowing, erosion, bypassing
and reworking (Follmi, 2016; Gémez & Ferndndez-
Lopez, 1994; Jenkyns, 1971; Fig. 8). Both conditions
are relevant for the three iron oolite deposits in
Switzerland. A key factor controlling the formation of
iron oolites was likely syn-sedimentary tectonics, which

1) Microbial Fe reduction  2) Reworking of iron ooids 3) Incorporation of broken
and Fe mobilization in an active hydrodynamic ooids and sedimentary
regime condensation
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Fig. 8 Schematic sketch for the formation of ancient and

modern iron ooids. The formation of Jurassic iron ooids results

from the coupling of sedimentary organic carbon enrichment

(due to the delivery of carbon associated with detrital clays),
microbially-mediated Fe cycling of sediment-sourced Fe,

and sedimentary condensation processes related to agitated
hydrodynamics. The variation in authigenic eNd between — 9

and — 7 of the studied iron oolites likely reflects variations in the
weathered continental source areas. In contrast to ancient iron ooids,
modern iron ooids form in a volcanic setting with intense submarine
hydrothermal activity (Di Bella et al,, 2019). Average continental

and hydrothermal §°°Fe, the latter including mid-ocean ridge
hydrothermal fluids, are from Beard et al. (2003). Continental eNd

(— 10 to — 8) represents a range for four modern Swiss rivers (Rickli
et al, 2013), which is similar to the average of detrital sedimentary
rocks aged 0-200 Ma (— 10£38, 1 SD; compiled in Gar¢on, 2021) and
averaged world river suspended loads (— 1124, 1 SD; compiled in
Garcon, 2021). Hydrothermal eNd represents averaged compositions
of mid-ocean ridge basalts (£ 1 SD; compiled in Gale et al,, 2013).
Middle Jurassic Tethyan Nd isotope composition cover the temporal
variations given in Dera et al. (2015)

S. Schunck et al.

resulted in the subsidence of the European Tethyan
continental margin, forming submarine plateaus and
basins (e.g. Bitterli, 1977; Trimpy, 1949, 1952; Ziegler,
1993). Such plateaus are influenced by strong ocean
currents that sweep away sediments, thus decreasing
the accumulation rate (e.g. Eberli et al., 2010; Fursich,
1979; Heezen & Hollister, 1964). This condensation
process is likely intensified by presumably little, but
not zero, terrigenous sediment input. Temporarily
less intense ocean currents favored the deposition
of clay minerals at the depositional site (Reineck &
Singh, 2012, and references therein), supporting the
enrichment of organic carbon, since clay minerals are
attractive sites for both iron and organic matter (e.g.
Kennedy et al., 2002; Oades, 1988). That clay minerals
are relevant for the formation of iron oolites is also
supported by their presence in all studied Swiss iron
oolites. The same processes are also documented in
the Middle to Late Jurassic condensed sequences of
the northern continental margin of the Iberian Basin
(Garcia-Frank et al., 2012), and in the Late Bajocian to
Tithonian condensed Rosso Ammonitico Veronese of
the southern continental margin formed on the Trento
Plateau (Bernoulli et al., 1979; Martire, 1992, 1996;
Préat et al., 2006).

Similarly, the only known place where iron ooids
are actively forming today is in a dynamic shelf setting,
northeast of Panarea Island in the Tyrrhenian Sea (Di
Bella et al, 2019). Several paleoshorelines document
sea level changes related to global sea-level fluctuations
and long-term uplift at the depositional site (Chappell &
Shackleton, 1986; Di Bella et al., 2019; Lucchi, 2009; Luc-
chi et al., 2007). Fluctuations in sea level shift the zones
of deposition and erosion in marine settings, resulting
in oscillating sediment accumulation and erosion (e.g.
Lewis, 1973; Paulay & McEdward, 1990; Swift & Thorne,
1991). Though rapid sea-level variations can account for
low accumulation rates, this seems unlikely to be the sole
process for the formation of ancient iron oolites since
their formation spans several Myrs (Rais et al., 2007).
Our Fe isotope data suggest that microbially-mediated
Fe cycling contributed to the formation of iron oolites,
whilst Nd isotope compositions provide evidence against
hydrothermally sourced Fe.

6 Conclusion

Iron-rich condensed sequences are characteristic of the
Middle Jurassic Period, and formed during significant
changes in plate configuration and climate (e.g. Dera
et al., 2011; Rais et al., 2007; Ziegler, 1988). The formation
of condensed sequences coincides with increased hydro-
thermal activity and increased continental runoff related
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to the breakup of Pangea (e.g. Halliday & Mitchell, 1984;
Holz, 2015), suggesting that one of these processes could
be the source of iron. The breakup of Pangea formed a
peculiar submarine relief, with plateaus and basins con-
trolled by syn-sedimentary tectonics (e.g. Triumpy, 1949;
Ziegler, 1993). Iron ooids accumulated on the plateaus or
highs, where low sedimentation and high erosion rates
were influenced by ocean currents and partly by sea level
fluctuations, leading to sedimentary condensation.

Leached authigenic Nd isotope compositions yield con-
straints on the origin of Fe in the studied iron oolite suc-
cessions in Switzerland. The crustal Nd isotope signature
of the iron oolites suggests that the involvement of hydro-
thermal fluids in their formation is unlikely, and that Fe
is instead derived from detrital material supplied by riv-
ers. This contrasts with modern iron ooids, where the
source of Fe is presumably hydrothermal (Di Bella et al.,
2019; Sturesson et al., 2000). This difference between the
ancient and modern Fe source might suggest that either
iron ooid formation switched from a crustal setting in the
Middle Jurassic to a hydrothermal setting today, or that
iron ooids can form in different environments.

Aqueous iron concentrations are generally extremely
low in the ocean, but increase in reducing settings due
to microbially-mediated Fe reduction, suggesting that
microbial mediation is an important process to locally
enrich iron. Signs of microbial iron enrichment processes
are still preserved in the Middle to earliest Late Juras-
sic iron oolites and documented in negative Fe isotope
signatures.
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