Abele, G. (1974). Bergstürze in den Alpen : ihre Verbreitung, Morphologie und Folgeerscheinungen. München. Wissenschaftliche Alpenvereinshefte, Heft 25
Blaauw, M., & Christen, J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, 457–474.
Article
Google Scholar
Bozzano, F., Mazzanti, P., Anzidei, M., Esposito, C., Floris, M., Fasani, G. B., & Esposito, A. (2009). Slope dynamics of Lake Albano (Rome, Italy): insights from high resolution bathymetry. Earth Surface Processes and Landforms, 34(11), 1469–1486.
Article
Google Scholar
Bussmann, F., & Anselmetti, F. (2010). Rossberg landslide history and flood chronology as recorded in Lake Lauerz sediments (Central Switzerland). Swiss Journal of Geosciences., 103, 43–59.
Article
Google Scholar
Clark, K.J., Upton, P., Carey, J., Rosser, B., and Strong, D. (2015). Tsunami and seiche hazard scoping study of lakes Tekapo, Pukaki, Ohau, Alexandrina, and Ruataniwha: Geological and Nuclear Sciences Limited (GNS Science) Consultancy Report 2014/227, 82 p
Czymzik, M., Brauer, A., Dulski, P., Plessen, B., Naumann, R., von Grafenstein, U., & Scheffler, R. (2013). Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany). Quaternary Science Reviews, 61, 96–110.
Article
Google Scholar
Daxer, C., Moernaut, J., Haas, J., Strasser, M., & Taylor, T. (2018). Late Glacial and Holocene sedimentary infill of Lake Mondsee (Eastern Alps, Austria) and historical rockfall activity revealed by reflection seismics and sediment core analysis. Austrian Journal of Earth Sciences, 111, 111–134.
Article
Google Scholar
Deplazes, G., Anselmetti, F., & Hajdas, I. (2007). Lake sediments deposited on the Flims rockslide mass: the key to date the largest mass movement of the Alps. Terra Nova, 19, 252–258.
Article
Google Scholar
Evans, S. G. (1989). The 1946 Mount Colonel Foster rock avalanche and associated displacement wave, Vancouver Island, British Columbia. Canadian Geotechnical Journal, 26, 447–452. https://doi.org/10.1139/t89-057
Article
Google Scholar
Evers, F. M., & Boes, R. M. (2019). Impulse wave runup on steep to vertical slopes. Journal of Marine Science and Engineering, 7(1), 8.
Article
Google Scholar
Evers, F. M., Heller, V., Fuchs, H., Hager W. H., Boes, R. M. (2019). Landslide-generated impulse waves in reservoirs—basics and computation. VAW-Mitteilung 254 (R. Boes, ed.), ETH Zurich, Zürich
Fabbri, S. C., Buechi, M. W., Horstmeyer, H., Hilbe, M., Hübscher, C., Schmelzbach, C., Weiss, B., & Anselmetti, F. S. (2018). A subaquatic moraine complex in overdeepened Lake Thun (Switzerland) unravelling the deglaciation history of the Aare Glacier. Quaternary Science Reviews, 187, 62–79.
Article
Google Scholar
Fabbri, S. C., Herwegh, M., Horstmeyer, H., Hilbe, M., Hübscher, C., Merz, K., et al. (2017). Combining amphibious geomorphology with subsurface geophysical and geological data: a neotectonic study at the front of the Alps (Bernese Alps, Switzerland). Quaternary International, 451, 101–113. https://doi.org/10.1016/j.quaint.2017.01.033
Article
Google Scholar
Fäh, D., Giardini, D., Kästli, P., Deichmann, N., Gisler, M., Schwarz-Zanetti, G., Alvarez-Rubio, S., Sellami, S., Edwards, B., Allmann, B., Bethmann, F., Wössner, J., Gassner-Stamm, G., Fritsche, S., Eberhard, D., (2011). ECOS-09 Earthquake Catalogue of Switzerland Release 2011. Report and Database. Public catalogue, 17.4.2011. Swiss Seismological Service ETH Zürich, Report SED/RISK/R/001/20110417
Fredegarius. (1888). Chronicarum quae dicuntur Fredegarii scholastici, Liber IV. In: Monumenta Germaniae Historica (MGH) (Ed. B. Krusch), Script. Rer. Mer., 128 pp
Grimstad, E., & Nesdal, S. (1991). The Loen rockslides-a historical review. Publikasjon-Norges Geotekniske Institutt, 182, 1–6.
Google Scholar
Gubler, R., Amstutz, M., & Stäheli, L. (2017). Thun, Im Schoren 10 und 20. Spätbronze- und hallstattzeitliche Siedlungsspuren am Thunersee. Archäologie Bern 2017. Jahrbuch Des Archäologischen Dienstes Des Kantons Bern, 2017, 109–112.
Google Scholar
Gylfadóttir, S. S., Kim, J., Helgason, J. K., Brynjólfsson, S., Höskuldsson, Á., Jóhannesson, T., Harbitz, C. B., & Løvholt, F. (2017). The 2014 Lake Askja rockslide-induced tsunami: optimization of numerical tsunami model using observed data. Journal of Geophysical Research: Oceans, 122(5), 4110–4122.
Article
Google Scholar
Haeussler, P. J., Gulick, S. P. S., McCall, N., Walton, M., Reece, R., Larsen, C., Shugar, D. H., Geertsema, M., Venditti, J. G., & Labay, K. (2018). Submarine deposition of a subaerial landslide in Taan Fiord, Alaska. Journal of Geophysical Research Earth Surface. https://doi.org/10.1029/2018JF004608
Article
Google Scholar
Hancox, G. T., Cox, S., Turnbull, I., & Crozier, M. (2003). Reconnaissance studies of landslides and other ground damage caused by the Mw 7.2 Fiordland earthquake of 22 August 2003. Institute of Geological and Nuclear Sciences Science Report, 30, 32.
Google Scholar
Hansen, L., Waldmann, N., Storms, J. E., Eilertsen, R. S., Ariztegui, D., Chapron, E., & Nesje, A. (2016). Morphological signatures of mass wasting and delta processes in a fjord-lake system: Insights from Lovatnet, western Norway. Norsk Geologisk Tidsskrift, 96(3), 179–199. https://doi.org/10.17850/njg96-3-02
Article
Google Scholar
Heim, A. (1931). Bergsturz und Menschenleben. (Der) Schweizer Geograph = (Le) géographe suisse, 505133–2, 1016–8311, 8, 1931, 5, 126.
Heller, V. (2009). Landslide generated impulse wave. Prediction of near field characteristics, Mitteilungen/Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der Eidgenössischen Technischen Hochschule Zürich, 204; PhD Thesis Nr. 17531, https://doi.org/10.3929/ethz-b-000157446
Herb, R., Breitschmid, A., Matter, A., Mojon, A., & Nabholz, W. (1978). Bericht über die Exkursion der Schweizerischen Geologischen Gesellschaft ins Helvetikum des Berner Oberlands vom 9 und 10. Oktober 1977. Eclogae Geologicae Helvetiae, 71, 233–254.
Google Scholar
Huber, A. (1982). Felsbewegungen und Uferabbrüche an Schweizer Seen, ihre Ursachen und Auswirkungen. Eclogae Geologicae Helvetiae, 1795–4, 0012–9402, 75, 1982, 3, 563.
Jørstad, F. (1968). Waves generated by landslides in Norwegian fjords and lakes: Oslo, Norway. Norwegian Geotechnical Institute Publication, 79, 13–32.
Google Scholar
Kastinger, M. B., Evers, F. M., & Boes, R. M. (2020). Run-up of impulse wave trains on steep to vertical slopes. Journal of Hydraulic Engineering, 146(10), 04020072.
Article
Google Scholar
Keller, B. (2017). Massive rock slope failure in Central Switzerland: history, geologic–geomorphological predisposition, types and triggers, and resulting risks. Landslides, 14, 1–21. https://doi.org/10.1007/s10346-017-0803-1
Article
Google Scholar
Kelts, K., Briegel, U., Ghilardi, K., & Hsu, K. (1986). The Limnogeology—ETH Coring System. Schweizerische Zeitschrift Fur Hydrologie-Swiss Journal of Hydrology, 48(1), 104–115. https://doi.org/10.1007/bf02544119
Article
Google Scholar
Kesseler, M., Heller, V., & Turnbull, B. (2020). Grain Reynolds number scale effects in dry granular slides. Journal of Geophysical Research: Earth Surface, 125(1), e2019JF005347.
Google Scholar
Knapp, S., Gilli, A., Anselmetti, F., Krautblatter, M., Hajdas, I. (2018). Multistage rock-slope failures revealed in lake sediments in a seismically active alpine region (Lake Oeschinen, Switzerland). Journal of Geophysical Research: Earth Surface 123
Köpfli, P., Grämiger, L. M., Moore, J. R., Vockenhuber, C., & Ivy-Ochs, S. (2018). The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago? Swiss Journal of Geosciences, 111(1), 205–219.
Article
Google Scholar
Körner, H. J. (1977). Flow mechanisms and resistances in the debris streams of rock slides. Bulletin of the International Association of Engineering Geology, 16, 101–104.
Article
Google Scholar
Kremer, K., Anselmetti, F. S., Evers, F. M., Goff, J., & Nigg, V. (2021). Freshwater (paleo)tsunamis—a review. Earth-Science Reviews, 212, 103447.
Article
Google Scholar
Leithold, E. L., Wegmann, K. W., Bohnenstiehl, D. R., Joyner, C. N., & Pollen, A. F. (2019). Repeated megaturbidite deposition in Lake Crescent, Washington, USA, triggered by Holocene ruptures of the Lake Creek-Boundary Creek fault system. GSA Bulletin, 131(11–12), 2039–2055.
Article
Google Scholar
Matter, A., Suesstrunk, A. E., Hinz, K., & Sturm, A. (1971). Ergebnisse reflexionsseismischer Untersuchungen im Thunersee. Eclogae Geologicae Helvetiae, 64(3), 505–520.
Google Scholar
Miller, D. J. (1960). The Alaska earthquake of July 10, 1958: Giant wave in Lituya Bay. Bulletin of the Seismological Society of America, 50(2), 253–266.
Article
Google Scholar
Moernaut, J., & De Batist, M. (2011). Frontal emplacement and mobility of sublacustrine landslides: results from morphometric and seismostratigraphic analysis. Marine Geology, 285(1), 29–45. https://doi.org/10.1016/j.margeo.2011.05.001
Article
Google Scholar
Naranjo, J. A., Arenas, M., Clavero, J., & Muñoz, O. (2009). Mass movement-induced tsunamis: main effects during the Patagonian Fjordland seismic crisis in Aisén (45°25′S), Chile. Andean Geology, 36(1), 137–145. https://doi.org/10.4067/S0718-71062009000100011
Article
Google Scholar
Norwegian Water Resources and Energy Directorate. (2016). Avalanche Online: https://www.nve.no/flaum-og-skred/skrednett/ (accessed October 2016).
Oswald, P., Strasser, M., Hammerl, C., & Moernaut, J. (2021). Seismic control of large prehistoric rockslides in the Eastern Alps. Nature Communications, 12(1), 1059.
Article
Google Scholar
Plafker, G., & Eyzaguirre, V. R. (1979). Rock avalanche and wave at Chungar, Peru. In Developments in Geotechnical Engineering (Vol. 14, pp. 269–279). Elsevier
Poschinger, A. V., Wassmer, P., & Maisch, M. (2006). The flims rockslide: history of interpretation and new insights (pp. 329–356). Springer Netherlands.
Google Scholar
Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., et al. (2013). Intcal13 and Marine13 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 55(4), 1869–1887.
Article
Google Scholar
Roberts, N. J., McKillop, R., Hermanns, R. L., Clague, J. J., & Oppikofer, T. (2014). Preliminary global catalogue of displacement waves from subaerial landslides. In K. Sassa (Ed.), Landslide science for a safer geoenvironment 3 (pp. 687–692). Springer International Publishing. https://doi.org/10.1007/978-3-319-04996-0_104
Chapter
Google Scholar
Roberts, N. J., McKillop, R. J., Lawrence, M. S., Psutka, J. F., Clague, J. J., Brideau, M.-A., & Ward, B. C. (2013). Impacts of the 2007 landslide-generated tsunami in Chehalis Lake, Canada. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 133–140). Heidelberg: Springer. https://doi.org/10.1007/978-3-642-31319-6_19
Chapter
Google Scholar
Sammartini, M., Moernaut, J., Anselmetti, F. S., Hilbe, M., Lindhorst, K., Praet, N., & Strasser, M. (2020). An atlas of mass-transport deposits in lakes, submarine landslides. In K. Ogata, A. Festa, & G. A. Pini (Eds.), Submarine landslides (pp. 201–226). Wiley. https://doi.org/10.1002/9781119500513.ch13
Chapter
Google Scholar
Sammartini, M., Moernaut, J., Kopf, A., Stegmann, S., Fabbri, S. C., Anselmetti, F. S., & Strasser, M. (2021). Propagation of frontally confined subaqueous landslides: insights from combining geophysical, sedimentological, and geotechnical analysis. Sedimentary Geology, 416, 105877. https://doi.org/10.1016/j.sedgeo.2021.105877
Article
Google Scholar
Schärer, L., & Ramstein, M. (2017). Thun, Schadau—Die Pfahlbauer am Thunersee. Archäologie Bern 2017. Jahrbuch des Archäologischen Dienstes des Kantons Bern 2017. Bern, 2017, 106–109.
Google Scholar
Schnellmann, M., Anselmetti, F. S., Giardini, D., & McKenzie, J. A. (2005). Mass movement-induced fold-and-thrust belt structures in unconsolidated sediments in Lake Lucerne (Switzerland). Sedimentology, 52(2), 271–289. https://doi.org/10.1111/j.1365-3091.2004.00694.x
Article
Google Scholar
Schnellmann, M., Anselmetti, F. S., Giardini, D., & McKenzie, J. A. (2006). 15,000 Years of mass-movement history in Lake Lucerne: implications for seismic and tsunami hazards. Eclogae Geologicae Helvetiae, 99, 409–428.
Article
Google Scholar
Schnellmann, M., Anselmetti, F. S., Giardini, D., McKenzie, J. A., & Ward, S. N. (2002). Prehistoric earthquake history revealed by lacustrine slump deposits. Geology, 30(12), 1131–1134. https://doi.org/10.1130/0091-7613(2002)030%3c1131:Pehrbl%3e2.0.Co;2
Article
Google Scholar
Steinhilber, F., Beer, J., and Fröhlich, C. (2009). Total solar irradiance during the Holocene, Geophysical Research Letters, 36 (19)
Sturm, M., & Matter, A. (1972). Sedimente und Sedimentationsvorgänge im Thunersee. Eclogae Geologicae Helvetiae, 65, 563–590.
Google Scholar
Trouet, V., Esper, J., Graham, N. E., Baker, A., Scourse, J. D., & Frank, D. C. (2009). Persistent positive north Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324(5923), 78–80.
Article
Google Scholar
Van Daele, M., Moernaut, J., Doom, L., Boes, E., Fontijn, K., Heirman, K., Vandoorne, W., Hebbeln, D., Pino, M., Urrutia, R., Brümmer, R., & De Batist, M. (2015). A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: implications for quantitative lacustrine palaeoseismology. Sedimentology, 62(5), 1466–1496. https://doi.org/10.1111/sed.12193
Article
Google Scholar
Van Daele, M., Versteeg, W., Pino, M., Urrutia, R., & De Batist, M. (2013). Widespread deformation of basin-plain sediments in Aysén fjord (Chile) due to impact by earthquake-triggered, onshore-generated mass movements. Marine Geology, 337, 67–79. https://doi.org/10.1016/j.margeo.2013.01.006
Article
Google Scholar
Waldmann, N., Anselmetti, F. S., Ariztegui, D., Austin, J., James, A., Pirouz, M., Moy, C. M., & Dunbar, R. (2011). Holocene mass-wasting events in Lago Fagnano, Tierra del Fuego (54°S): implications for paleoseismicity of the Magallanes-Fagnano transform fault. Basin Research, 23(2), 171–190.
Article
Google Scholar
Walter, F., Amann, F., Andrew, K., Kenner, R., Phillips, M., de Preux, A., Huss, M., Tognacca, C., Clinton, J. F., & Diehl, T. (2020). Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 351, 106933.
Article
Google Scholar
Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P., & Jetel, M. (2011). Structure and origin of Holocene cold events. Quaternary Science Reviews, 30, 3109–3123.
Article
Google Scholar
Watt, S. F., Pyle, D. M., Naranjo, J. A., & Mather, T. A. (2009). Edifice destruction on strike-slip fault zones: Landslide and tsunami hazard at Yate Volcano, Chile. Bulletin of Volcanology, 71(5), 559–574. https://doi.org/10.1007/s00445-008-0242-x
Article
Google Scholar
Wiles, G. C., & Calkin, P. E. (1992). Reconstruction of a debris-slide-initiated flood in the southern Kenai Mountains Alaska. Geomorphology, 5(6), 535–546. https://doi.org/10.1016/0169-555X(92)90024-I
Article
Google Scholar
Wirth, S. B., Gilli, A., Simonneau, A., Ariztegui, D., Vannière, B., Glur, L., Chapron, E., Magny, M., & Anselmetti, F. S. (2013). A 2000 year long seasonal record of floods in the southern European Alps. Geophysical Research Letters, 40(15), 4025–4029. https://doi.org/10.1002/grl.50741
Article
Google Scholar
Wirth, S. B., Girardclos, S., Rellstab, C., & Anselmetti, F. S. (2011). The sedimentary response to a pioneer geo-engineering project: tracking the Kander River deviation in the sediments of Lake Thun (Switzerland). Sedimentology, 58(7), 1737–1761. https://doi.org/10.1111/j.1365-3091.2011.01237.x
Article
Google Scholar
Yavari-Ramshe, S., & Ataie-Ashtiani, B. (2017). Subaerial landslide-generated waves: numerical and laboratory simulations (pp. 51–73). Springer International Publishing.
Google Scholar
Zaniboni, F., & Tinti, S. (2014). Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D Lagrangian modelling. Natural Hazards, 70(1), 567–592. https://doi.org/10.1007/s11069-013-0828-2
Article
Google Scholar
Zolitschka, B., Polgar, I. S., & Behling, H. (2021). Created by the Monte Peron rock avalanche: Lago di Vedana (Dolomites, Italy) and its sediment record of landscape evolution after a mass wasting event. Landslides. https://doi.org/10.1007/s10346-021-01787-2
Article
Google Scholar