Achtziger-Zupancic, P., Loew, S., & Mariéthoz, G. (2017). A new global database to improve predictions of permeability distribution in crystalline rocks at site scale. Journal of Geophysical Research Solid Earth, 122, 1876–1899. https://doi.org/10.1002/2017JB014106
Article
Google Scholar
Agemar, T., Brunken, J., Jodocy, M., Schellschmidt, R., Schulz, R., & Stober, I. (2013). Untergrundtemperaturen in Baden-Württemberg. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften, 164(1), 49–62. https://doi.org/10.1127/1860-1804/2013/0010
Article
Google Scholar
Alt-Epping, P., Diamond, L., Häring, M., Ladner, F., & Meier, D. (2013). Prediction of water–rock interaction and porosity evolution in a granitoid-hosted enhanced geothermal system, using constraints from the 5 km Basel-1 well. Applied Geochemistry, 38, 121–133.
Google Scholar
Aquilina, L., Pauwels, H., Center, A., & Fouillac, C. (1997a). Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir. Geochimica Et Cosmochimica Acta, 61, 4281–4295.
Google Scholar
Aquilina, L., Sureau, J. F., & Steinberg, M. (1997b). Comparison of surface-, aquifer- and pore-waters from a Mesozoic basin and its underlying Palaeozoic basement, southeast France: Chemical evolution of waters and relationships between aquifers. Chemical Geology, 138, 185–209.
Google Scholar
Banks, D., Odling, N. E., Skarphagen, H., & Rohr-Trop, E. (1996). Permeability and stress in crystalline rocks. Terra Nova, 8, 223–235.
Google Scholar
Behne, W. (1953). Untersuchungen zur Geochemie des Chlor und Brom. Geochimica Cosmochimica Acta, 3, 186–214.
Google Scholar
Böhlke, J. K., & Irwin, J. J. (1992). Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: Implications for sources of salinity in some ancient hydrothermal fluids. Geochemica Et Cosmochemica Acta, 56, 203–225.
Google Scholar
Bourdet, D. (2002). Well test analysis: the use of advanced interpretation models. In Cubitt, J. (ed.), Handbook of Petroleum Exploration and Production 3, Amsterdam: Elsevier Science B.V. ISBN 0-444-50968-2.
Bucher, K., & Grapes, R. (2011). Petrogenesis of metamorphic rocks (8th ed.). Springer.
Google Scholar
Bucher, K., & Stober, I. (2002). Water–rock reaction experiments with Black Forest gneiss and granite. In I. Stober & K. Bucher (Eds.), Water–rock interaction (pp. 61–95). KLUWER Academic Publishers.
Google Scholar
Bucher, K., & Stober, I. (2010). Fluids in the upper continental crust. Geofluids, 10, 241–253.
Google Scholar
Bucher, K., Stober, I., & Seelig, U. (2012). Water deep inside the mountains: Unique water samples from the Gotthard rail base tunnel, Switzerland. Chemical Geology, 334, 240–253.
Google Scholar
Cinco, L.H., & Samaniego, F.V. (1977). Effect of wellbore storage and damage on the transient pressure behavior of vertically fractured wells. Soc. Petrol. Engineers of AIME, SPE 6752: 8, Dallas/Texas.
Clauser, C. (1992). Permeability of crystalline rocks. EOS Transactions of the American Geophysical Union, 73, 233–237.
Google Scholar
Cooper, H. H., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well field history. American Geophysical Union Transaction., 27, 526–534.
Google Scholar
Correns, C.W. (1956). The geochemistry of the halogens. In Ahrens et al. (eds.), Physics and Chemistry of the Earth, vol. 1, (pp. 181–233), New York: McGraw-Hill.
Dezayes, C., & Lerouge, C. (2019). Reconstructing paleofluid circulation at the hercynian basement/mesozoic sedimentary cover interface in the upper rhine graben. Geofluids. 1-30. https://doi.org/10.1155/2019/4849860.
Dèzes, P., Schmid, S. M., & Ziegler, P. A. (2004). Evolution to the European Cenozoic Rift System: Interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389, 1–33.
Google Scholar
Drüppel, K., Stober, I., Grimmer, J.C., & Mertz-Kraus, R. (2020). Experimental alteration of granitic rocks: Implications for the evolution of geothermal brines in the Upper Rhine Graben, Germany. Geothermics, 88. https://doi.org/10.1016/j.geothermics.2020.101903.
Edmunds, W. M., & Savage, D. (1991). Geochemical characteristics of groundwater in granites and related crystalline rocks. In R. A. Downing & W. B. Wilkinson (Eds.), Applied Groundwater Hydrology, a British Perspective (pp. 199–216). Clarendon Press.
Google Scholar
Emmermann, R., Althaus, E., Giese, P., & Stöckert, B. (1995). KTB Hauptbohrung: Results of Geosientific Investigation in the KTB Field Laboratory, Final Report: 0–9,101 m. KTB Report, 95-2, E. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.
Frape, S.K., & Fritz, P. (1987). Geochemical trends for groundwaters from the Canadian Shield. In Fritz, P., Frape, S.K (eds.), Saline Water and Gases in Crystalline Rocks, Geological Association of Canada Special Paper, 33 (pp. 19–38). Ottawa: The Runge Press Ltd.
Frape, S.K., Blyth, A., Blomqvist, R., McNutt, R.H., & Gascoyne, M. (2004). Deep fluids in the continents: II. Crystalline rocks. In Drever, J.I., Holland, H.D., & Turekian, K.K. (eds.), Surface and Ground Water, Weathering, and Soils, Treatise on Geochemistry (pp. 541–580). Amsterdam: Elsevier.
Genter, A., Evans, K., Cuenot, N., Fritsch, D., & Sanjuan, B. (2010). Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosience, 342(7–8), 502–516. https://doi.org/10.1016/j.crte.2010.01.006
Article
Google Scholar
Geothermal Explorers Ltd. (2006). Cleanout and stimulation programme Basel 1 (BS1). report of Geothermal Explorers Ltd., 98. https://www.wsu.bs.ch. Accessed 24 May 2021.
Grimaud, D., Beaucaire, C., & Michard, G. (1990). Modelling of the evolution of ground waters in a granite system at low temperature: The Stripa ground waters, Sweden. Applied Geochemistry, 5, 515–525.
Google Scholar
Häring, M.O., Ladner, F., Schanz, U., & Spillmann, T. (2008a) Deep-Heat-Mining Basel, Preliminary results. Report Geothermal Explorers Ltd, 9 p., Pratteln Switzerland.
Häring, M. O., Schanz, U., Ladner, F., & Dyer, B. C. (2008). Characterisation of the Basel 1 enhanced geothermal system. Geothermics, 37, 469–495.
Google Scholar
Hofer, M. (2015). Gesteine und Tiefenwässer des Deep-Heat-Mining Projektes in Basel. Bachelor thesis, 52 p., University of Freiburg.
Holl, H.-G. (2015). What did we learn about EGS in the Cooper Basin?. Report Geodynamic ltd, Report no.: RES-FN-OT-RPT-01179, p. 78, https://doi.org/10.13140/RG.2.2.33547.49443.
Holland, T. J. B., & Powell, R. (2011). An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. Journal of Metamorphic Geology, 29, 333–383.
Google Scholar
Horner, D.R. (1951). Pressure Built-up in Wells. 3rd World Petroleum Congress, Sect. II, E. J. Bull., WPC-413, 503–521, The Hague, The Netherlands.
Ingebritsen, S. E., & Manning, C. E. (1999). Geological implications of a permeability-depth curve for the continental crust. Geology, 27, 1107–1110.
Google Scholar
Kaeser, B., Kalt, A., & Borel, J. (2007). The crystalline basement drilled at the Basel-1 geothermal site. A preliminary petrological geochemical study. Institut de Géologie et d'Hydrogéologie, Université de Neuchâtel. Internal report, 45 pp, Neuchâtel, Switzerland.
Kozlovsky, Y. E. A. (1987). The Superdeep Well of the Kola Peninsula. New York: Springer Press.
Google Scholar
Ladner, F., & Häring, M. O. (2009). Hydraulic characteristics of the basel 1 enhanced geothermal system. GRC Transactions, 33, 199–203.
Google Scholar
Ladner, F., Schanz, U., & Häring, M. O. (2008). Deep-Heat-Mining-Projekt Basel—Erste Erkenntnisse bei der Entwicklung eines Enhanced Geothermal System (EGS). Bulletin Angew Geology, 13(1), 41–54.
Google Scholar
Laubscher, H. (2001). Plate interactions at the southern end of the Rhine graben. Tectonophysics, 343, 1–19.
Google Scholar
Manning, C. E., & Ingebritsen, S. E. (1999). Permeability of the continental crust: Implications of geothermal data and metamorphic systems. Reviews of Geophysics, 37, 127–150.
Google Scholar
Markl, G., & Bucher, K. (1998). Metamorphic salt in granulites: Implications for the presence and composition of fluids in the lower crust. Nature, 391, 781–783.
Google Scholar
Mullis, J. (1987). Fluideinschluss-Untersuchungen in den Nagra-Bohrungen der Nordschweiz. Ecology Geology Helv., 80, 553–568.
Google Scholar
Orville, P. M. (1972). Plagioclase cation exchange equilibria with aqueous chloride solution: Results at 700 °C and 2000 bars in the presence of quartz. American Journal of Science, 272, 234–272.
Google Scholar
Parkhurst, D.L., & Appelo, C.A.J. (1999). User's guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, U.S. Geological Survey, Denver, Colorado, p. 312.
Pauwels, H., Fouillac, C., & Fouillac, A.-M. (1993). Chemistry and isotopes of deep geothermal saline Fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions. Geochimica Et Cosmochimica Acta, 57, 2737–2749.
Google Scholar
Pine, R. J., & Ledingham, P. (1983). In-situ hydraulic parameters for the Carnmenellis granite hot dry rock geothermal energy research reservoir. SPE annual technical conference, SPE12020, San Francisco, United States.
Pouchou, J. L., & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In K. F. J. Heinrich & D. E. Newbury (Eds.), Electron Probe Quantitation (pp. 31–75). Springer.
Google Scholar
Sanjuan, B., Millot, R., Innocent, C., Dezayes, C., Scheiber, J., & Brach, M. (2016). Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chemical Geology, 428, 27–47.
Google Scholar
Solberg, P., Lockner, D., & Byerlee, J.D. (1980). Hydraulic Fracturing in Granite under Geothermal Conditions. International Journal of Rock Mechanics and Mining Science and Geomechanics, 17, 25–33, Pergamon Press Ltd, UK.
Stober, I. (1986). Strömungsverhalten in Festgesteinsaquiferen mit Hilfe von Pump- und Injektionsversuchen. Geologisches Jahrbuch, C 42, 204 S., Hannover.
Stober, I., Giovanoli, F., Wiebe, V. & Bucher, K. (2022). Deep hydrochemical section through the Central Alps—evolution of deep water in the continental upper crust and solute acquisition during water-rock-interaction along the Sedrun section of the Gotthard Base Tunnel. Swiss Journal of Geosciences (under review).
Stober, I. (2011). Depth- and pressure-dependent permeability in the upper continental crust: Data from the Urach 3 geothermal borehole, southwest Germany. Hydrogeology Journal, 19, 685–699.
Google Scholar
Stober, I., & Bucher, K. (1999a). Deep Groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry, 14, 237–254.
Google Scholar
Stober, I., & Bucher, K. (1999b). Origin of salinity of deep groundwater in Crystalline rocks. Terra Nova, 11(4), 181–185.
Google Scholar
Stober, I., & Bucher, K. (2000). Hydraulic properties of the upper continental crust: Data from the Urach 3 geothermal well. In I. Stober & K. Bucher (Eds.), Hydrogeology in crystalline rocks (pp. 53–78). KLUWER academic Publishers.
Google Scholar
Stober, I., & Bucher, K. (2004). Fluid Sinks within the Earth’s Crust. Geofluids, 4, 143–151.
Google Scholar
Stober, I., & Bucher, K. (2005). The upper continental crust, an aquifer and its fluid: Hydraulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids, 5, 8–19.
Google Scholar
Stober, I., & Bucher, K. (2006). Hydraulic properties of the crystalline basement. Hydrogeology Journal, 15, 213–224.
Google Scholar
Stober, I., & Bucher, K. (2014). Hydraulic conductivity of fractured upper crust: Insights from hydraulic tests in boreholes and fluid–rock interaction in crystalline basement rocks. Geofluids, 16, 161–178.
Google Scholar
Stober, I., & Bucher, K. (2021). Geothermal energy (2nd ed.). Springer.
Google Scholar
Stumm, W., & Morgan, J. J. (1975). Aquatic Chemistry (2nd ed.). Wiley and Sons.
Google Scholar
Tischner, T., Pfender, M., & Teza, D. (2006). Hot Dry Rock Projekt Soultz: Erste Phase der Erstellung einer wissenschaftlichen Pilotanlage. Abschlussbericht zum Vorhaben 0327097, 87, BGR, Hannover.
Ustazewski, K., & Schmid, S. M. (2007). Latest Pliocene to recent thick-skinned tectonics at the Upper Rhine Graben-Jura Mountains junction. Swiss Journal of Geosciences, 100(2), 293–312.
Google Scholar
Vidal, J., & Genter, A. (2018). Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: Insights from geothermal wells. Geothermics, 74, 57–73.
Google Scholar
Weisenberger, T., & Bucher, K. (2010). Zeolites in fissures of granites and gneisses of the Central Alps. Journal of Metamorphic Geology, 28, 825–847.
Google Scholar
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
Google Scholar
Wolery, T.J. (1992). EQ3/6, a Software Package for Geochemical Modelling of Aqueous Systems: Package Overview and Installation Guide. Lawrence Livermore National Laboratory, Livermore, California.
Yardley, B. W. D., & Banks, D. A. (1995). The behavior of chloride and bromide during metamorphic cycle. In Y. K. Kharaka & A. S. Maest (Eds.), Water–Rock Interaction (pp. 625–628). Balkema.
Google Scholar
Zeitlhöfler, M., Wagner, B., & Spörlein, T. (2015). Strukturgeologie und Grundwasserführung im ostbayerischen Grundgebirge. Geologica Bavarica, 112, 1–64.
Google Scholar
Ziegler, M., Valley, B., & Evans, K.F. (2015). Characterisation of Natural Fractures and Fracture Zones of the Basel EGS Reservoir inferred from Geophysical Logging of the Basel-1 Well. Proceedings World Geothermal Congress, 12 p., Melbourne, Australia.
Zimmer, K., Zhang, Y., Lu, P., Chen, Y., Zhang, G., Dalkilic, M., & Zhu, Ch. (2016). SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. Computers and Geosciences, 90, 97–111.
Google Scholar