Agard, P., Prigent, C., Soret, M., Dubacq, B., Guillot, S., & Deldicque, D. (2020). Slabitization: mechanisms controlling subduction development and viscous coupling. Earth–science Reviews, 208, 1–28. https://doi.org/10.1016/j.earscirev.2020.103259
Article
Google Scholar
Annen, C. (2017). Factors affecting the thickness of thermal aureoles. Frontiers in Earth Science, 5, 82.
Article
Google Scholar
Arai, S. (1975). Contact metamorphosed dunite-harzburgite complex in the Chugoku district, western Japan. Contributions to Mineralogy and Petrology, 52(1), 1–16. https://doi.org/10.1007/BF00377998
Article
Google Scholar
Ashley, P. M., Ambler, E. P., & Flood, R. H. (1979). Two occurrences of ultramafic hornfels in the Biggenden Beds, southeastern Queensland. Journal of the Geological Society of Australia: An International Geoscience Journal of the Geological Society of Australia, 26, 29–37. https://doi.org/10.1080/00167617908729064
Article
Google Scholar
Batanova, V. G., Sobolev, A. V., & Kuzmin, D. V. (2015). Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser. Chemical Geology, 419, 149–157.
Article
Google Scholar
Berg, J. H. (1977). Dry granulite mineral assemblages in the contact aureoles of the Nain complex, Labrador. Contributions to Mineralogy and Petrology, 64, 33–52. https://doi.org/10.1007/BF00375284
Article
Google Scholar
Berg, J. H., & Docka, J. A. (1983). Geothermometry in the Kiglapait contact aureole, Labrador. American Journal of Science, 283(5), 414–434. https://doi.org/10.2475/ajs.283.5.414
Article
Google Scholar
Bowen, N. L., & Tuttle, O. F. (1949). The system MgO–SiO2–H2O. Geological Society of America Bulletin, 60(3), 439–460. https://doi.org/10.1130/0016-7606(1949)60[439:TSM]2.0.CO;2
Article
Google Scholar
Bucher, K., & Pfeifer, H.-R. (1973). Über Metamorphose und Deformation der östlichen Malenco-Ultramafitite und deren Rahmengesteine (Prov. Sondrio, N-Italien). Schweizerische Mineralogische Petrogrographische Mitteilungen, 53, 231–241. https://doi.org/10.5169/seals-41383
Article
Google Scholar
Bucher-Nurminen, K. (1977). Die beziehung zwischen deformation, metamorphose und magmatismus im Gebiet der Bergeller Alpen. Schweizerische Mineralogische Und Petrographische Mitteilungen, 57, 413–434. https://doi.org/10.5169/seals-44443
Article
Google Scholar
Burkhard, D. J., & O’Neil, J. R. (1988). Contrasting serpentinization processes in the eastern Central Alps. Contributions to Mineralogy and Petrology, 99(4), 498–506. https://doi.org/10.1007/BF00371940
Article
Google Scholar
Chernosky, J., Day, H. W., & Caruso, L. (1985). Equilibria in the system MgO–SiO2–H2O: Experimental determination of the stability of Mg-anthophyllite. American Mineralogist, 70(3–4), 223–236.
Google Scholar
Clément, M., Padrόn-Navarta, J. A., & Tommasi, A. (2019). Interplay between fluid extraction mechanisms and antigorite dehydration reactions (Val Malenco, Italian Alps). Journal of Petrology. https://doi.org/10.1093/petrology/egz058
Article
Google Scholar
Connolly, J. (2009). The geodynamic equation of state: what and how. Geochemistry, Geophysics, Geosystems,. https://doi.org/10.1029/2009GC002540
Article
Google Scholar
Dale, J., Holland, T., & Powell, R. (2000). Hornblende–garnet–plagioclase thermobarometry: A natural assemblage calibration of the thermodynamics of hornblende. Contributions to Mineralogy and Petrology, 140(3), 353–362.
Article
Google Scholar
Diener, J., & Powell, R. (2012). Revised activity–composition models for clinopyroxene and amphibole. Journal of Metamorphic Geology, 30(2), 131–142.
Article
Google Scholar
Diethelm, K. H. (1985). Hornblendite und Gabbros im oestlichen Bergell (Val Sissone, Provinz Sondrio, Italien). Schweizerische Mineralogische Und Petrographische Mitteilungen, 65(2–3), 223–246. https://doi.org/10.5169/seals-50222
Article
Google Scholar
Dietrich, V. (1974). Alpine metamorphism of mafic rocks. Schweizerisches Mineralogische Und Petrografisches Mittelungen, 54, 291–333. https://doi.org/10.5169/seals-42197
Article
Google Scholar
Docka, J., Berg, J., & Klewin, K. (1986). Geothermometry in the Kiglapait aureole: Part II. Evaluation of exchange thermometry in a well-constrained thermal setting. Journal of Petrology, 27(3), 605–626. https://doi.org/10.1093/petrology/27.3.605
Article
Google Scholar
Dymkova, D., & Gerya, T. (2013). Porous fluid flow enables oceanic subduction initiation on Earth. Geophysical Research Letters, 40(21), 5671–5676. https://doi.org/10.1002/2013GL057798
Article
Google Scholar
Eberhard, L., & Pettke, T. (2021). Antigorite dehydration fluids boost carbonate mobilisation and crustal CO2 outgassing in collisional orogens. Geochimica Et Cosmochimica Acta, 300, 192–214.
Article
Google Scholar
Eldursi, K., Branquet, Y., Guillou-Frottier, L., & Marcoux, E. (2009). Numerical investigation of transient hydrothermal processes around intrusions: Heat-transfer and fluid-circulation controlled mineralization patterns. Earth and Planetary Science Letters, 288, 70–83. https://doi.org/10.1016/j.epsl.2009.09.009
Article
Google Scholar
Eskola, P. E. (1914). On the relation between chemical and mineralogical composition in the metamorphic rocks of the Orijärvi region. Bulletin De La Commission Géologique De Finlande, 44, 109.
Google Scholar
Eskola, P. E. (1921). The mineral facies of rocks. Norsk Geologisk Tidsskrift, 6, 143–194.
Google Scholar
Evans, B. W. (1976). Stability of chrysotile and antigorite in the serpentine multisystem. Schweizerische Mineralogische Und Petrographische Mitteilungen, 56, 79–93. https://doi.org/10.5169/seals-43677
Article
Google Scholar
Evans, B. W., & Frost, R. B. (1976). Chrome-spinel in progressive metamorphism—a preliminary analysis. Geochimica Et Cosmochimica Acta, 39(6–7), 959–972. https://doi.org/10.1016/0016-7037(75)90041-1
Article
Google Scholar
Evans, B., & Guggenheim, S. (1988). Talc, pyrophyllite, and related minerals. Reviews in Mineralogy, 19, 574–587. https://doi.org/10.2138/rmg.1988.19.8
Article
Google Scholar
Evans, B. W., & Trommsdorff, V. (1970). Regional metamorphism of ultramafic rocks in the Central Alps: Prageneses in the system CaO–MgO–SiO2–H2O. Schweizerische Mineralogische Und Petrographische Mitteilungen, 50, 481–492. https://doi.org/10.5169/seals-39264
Article
Google Scholar
Evans, B. W., & Trommsdorff, V. (1978). Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth and Planetary Science Letters, 40(3), 333–348. https://doi.org/10.1016/0012-821X(78)90158-9
Article
Google Scholar
Evans, B. W., & Trommsdorff, V. (1983). Fluorine hydroxil titanian clinohumite in the Alpine recrystallized garnet peridotite: Compositional controls and petrologic significance. American Journal of Science, 283A, 355–369.
Google Scholar
Ferry, J. M. (1995). Fluid flow during contact metamorphism of ophicarbonate rocks in the Bergell aureole, Val Malenco, Italian Alps. Journal of Petrology, 36(4), 1039–1053. https://doi.org/10.1093/petrology/36.4.1039
Article
Google Scholar
Floess, D., & Baumgartner, L. P. (2015). Constraining magmatic fluxes through thermal modelling of contact metamorphism. Geological Society, London, Special Publications, 422(1), 41–56. https://doi.org/10.1144/SP422.8
Article
Google Scholar
Frost, B. (1976). Limits to the assemblage forsterite-anorthite as inferred from peridotite hornfelses, Icicle Creek, Washington. American Mineralogist, 61(7–8), 732–750.
Google Scholar
Frost, B. R. (1991). Introduction to oxygen fugacity and its petrologic importance. Reviews in Mineralogy and Geochemistry, 25, 1–9. https://doi.org/10.2138/rmg.1991.25.1
Article
Google Scholar
Frost, R. B. (1975). Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. Journal of Petrology, 16(2), 272–313. https://doi.org/10.1093/petrology/16.1.272
Article
Google Scholar
Fumagalli, P., & Poli, S. (2005). Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46(3), 555–578. https://doi.org/10.1093/petrology/egh088
Article
Google Scholar
Fumagalli, P., Poli, S., Fischer, J., Merlini, M., & Gemmi, M. (2014). The high-pressure stability of chlorite and other hydrates in subduction mélanges: Experiments in the system Cr2O3–MgO–Al2O3–SiO2–H2O. Contributions to Mineralogy and Petrology, 167(2), 979. https://doi.org/10.1007/s00410-014-0979-5
Article
Google Scholar
Furlong, K. P., Hanson, R. B., & Bowers, J. R. (1991). Modeling thermal regimes. Reviews in Mineralogy and Geochemistry, 26(1), 437–505. https://doi.org/10.2138/rmg.1991.26.10
Article
Google Scholar
Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V., & Whattam, S. A. (2015). Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature, 527(7577), 221–225. https://doi.org/10.1038/nature15752
Article
Google Scholar
Gieré, R. (1985). Metasedimente der Suretta-Decke am Ost-und Sudostrand der Bergeller Intrusion: Lithostratigraphische Korrelation und Metamorphose. Schweizerische Mineralogische Und Petrographische Mitteilungen, 65(1), 57–78. https://doi.org/10.5169/seals-50214
Article
Google Scholar
Goldschmidt, V. M. (1911). Die Kontaktmetamorphose im Kristianagebiet (1st ed.). Kristiania.
Google Scholar
Goldschmidt, V. M. (1922). Die Gesetze der Gesteinsmetamorphose mit Beispielen aus der Geologie des südlichen Norwegens (22nd ed.). Kristiania.
Google Scholar
Goto, A., & Tatsumi, Y. (1990). Stability of chlorite in the upper mantle. American Mineralogist, 75(1–2), 105–108.
Google Scholar
Green, E., White, R., Diener, J., Powell, R., Holland, T., & Palin, R. (2016). Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. Journal of Metamorphic Geology, 34(9), 845–869.
Article
Google Scholar
Guntli, P., & Liniger, M. (1989). Metamorphose in der Margna-Decke im Bereich Piz da la Margna und Piz Fedoz (Oberengadin). Schweizerische Mineralogische Und Petrographische Mitteilungen, 69(2), 289–301. https://doi.org/10.5169/seals-52795
Article
Google Scholar
Gyr, T. (1967). Geologische und petrographische Untersuchungen am Ostrande des Bergeller Massivs. (Ph.D. Thesis). ETH Zurich.
Google Scholar
Hansmann, W. (1996). Age determinations on the tertiary Masino-Bregaglia (Bergell) intrusives (Italy, Switzerland): A review. Schweizerische Mineralogische Und Petrographische Mitteilungen, 76(3), 421–451. https://doi.org/10.5169/seals-57709
Article
Google Scholar
Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C., & Welch, M. D. (2012). Nomenclature of the amphibole supergroup. American Mineralogist, 97(11–12), 2031–2048. https://doi.org/10.2138/am.2012.4276
Article
Google Scholar
Hermann, J., & Muntener, O. (1992). Strukturelle Entwicklung im Grenzbereich zwischen dem penninischen Malenco-Ultramafitit und dem Unterostalpin (Margna-und Sella-Decke). Schweizerische Mineralogische Und Petrographische Mitteilungen, 72, 225–240. https://doi.org/10.5169/seals-54909
Article
Google Scholar
Hermann, J., Müntener, O., Trommsdorff, V., Hansmann, W., & Piccardo, G. B. (1997). Fossil crust-to-mantle transition, Val Malenco (Italian Alps). Journal of Geophysical Research, 102(B9), 20123–20132. https://doi.org/10.3929/ethz-a-001823002
Article
Google Scholar
Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N., & Petitgirard, S. (2007). High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318(5858), 1910–1913. https://doi.org/10.1126/science.1148494
Article
Google Scholar
Hirauchi, K.-I., Fukushima, K., Kido, M., Muto, J., & Okamoto, A. (2016). Reaction-induced rheological weakening enables oceanic plate subduction. Nature Communications, 7(1), 1–7. https://doi.org/10.1038/ncomms12550
Article
Google Scholar
Holland, T. J., Green, E. C., & Powell, R. (2018). Melting of peridotites through to granites: A simple thermodynamic model in the system KNCFMASHTOCr. Journal of Petrology, 59(5), 881–900. https://doi.org/10.1093/petrology/egy048
Article
Google Scholar
Holland, T., & Powell, R. (1998). An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16(3), 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
Article
Google Scholar
Jaeger, J. (1961). The cooling of irregularly shaped igneous bodies. American Journal of Science, 259(10), 721–734. https://doi.org/10.2475/ajs.259.10.721
Article
Google Scholar
Jäger, E. (1973). Die alpine Orogenese im Lichte der radiometrischen Altersbestimmung. Eclogae Geologicae Helvetiae, 66(1), 11–21. https://doi.org/10.5169/seals-164180
Article
Google Scholar
Jenkins, D. M. (1981). Experimental phase relations of hydrous peridotites modelled in the system H2O–CaO–MgO–Al2O3–SiO2. Contributions to Mineralogy and Petrology, 77(2), 166–176. https://doi.org/10.1007/BF00636520
Article
Google Scholar
Jenkins, D. M. (1983). Stability and composition relations of calcic amphiboles in ultramafic rocks. Contributions to Mineralogy and Petrology, 83(3–4), 375–384. https://doi.org/10.1007/BF00371206
Article
Google Scholar
Jenkins, D. M. (1994). Experimental reversal of the aluminum content in tremolitic amphiboles in the system H2O–CaO–MgO–Al2O3–SiO2. American Journal of Science, 294(5), 593–620. https://doi.org/10.2475/ajs.294.5.593
Article
Google Scholar
Jenkins, D. M., & Chernosky, J. V. (1986). Phase equilibria and crystallochemical properties of Mg-chlorite. American Mineralogist, 71(7–8), 924–936.
Google Scholar
Karig, D. E. (1982). Initiation of subduction zones: Implications for arc evolution and ophiolite development. Geological Society, London, Special Publications, 10(1), 563–576. https://doi.org/10.1144/GSL.SP.1982.010.01.37
Article
Google Scholar
Kempf, E. D., Hermann, J., Reusser, E., Baumgartner, L. P., & Lanari, P. (2020). The role of the antigorite + brucite to olivine reaction in subducted serpentinites (Zermatt, Switzerland). Swiss Journal of Geosciences, 113(1), 16. https://doi.org/10.1186/s00015-020-00368-0
Article
Google Scholar
Kerrick, D. M. (1991). Overview of contact metamorphism. Reviews in Mineralogy and Geochemistry, 26(1), 1–12. https://doi.org/10.2138/rmg.1991.26.1
Article
Google Scholar
Klemme, S., Ivanic, T., Connolly, J., & Harte, B. (2009). Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos, 112, 986–991. https://doi.org/10.1016/j.lithos.2009.05.007
Article
Google Scholar
Lafay, R., Baumgartner, L. P., Putlitz, B., & Siron, G. (2019). Oxygen isotope disequilibrium during serpentinite dehydration. Terra Nova, 31(2), 94–101. https://doi.org/10.1111/ter.12373
Article
Google Scholar
Laird, J. (1988). Chlorites; metamorphic petrology. Reviews in Mineralogy and Geochemistry, 19(1), 405–453.
Google Scholar
Leake, B. E., Woolley, A. R., Arps, C. E., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., … Youzhi, G. (1997). Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineralogical Magazine, 61(405), 295–310.
Article
Google Scholar
Li, X. P., Rahn, M., & Bucher, K. (2004). Serpentinites of the Zermatt-Saas ophiolite complex and their texture evolution. Journal of Metamorphic Geology, 22(3), 159–177. https://doi.org/10.1111/j.1525-1314.2004.00503.x
Article
Google Scholar
Mandler, B. E., & Grove, T. L. (2016). Controls on the stability and composition of amphibole in the Earth’s mantle. Contributions to Mineralogy and Petrology, 171(8), 1–20. https://doi.org/10.1007/s00410-016-1281-5
Article
Google Scholar
Matthes, S., & Knauer, E. (1981). The phase petrology of the contact metamorphic serpentinites near Erbendorf, Oberpfalz, Bavaria. Neues Jahrbuch Für Mineralogie Abhandlungen, 141, 59–89.
Google Scholar
Müntener, O. (1997). The Malenco peridotites (Alps). (Ph.D. Thesis). ETH Zürich.
Google Scholar
Müntener, O., & Hermann, J. (1996). The Val Malenco lower crust–upper mantle complex and its field relations (Italian Alps). Schweizerische Mineralogische Und Petrographische Mitteilungen, 76(3), 475–500. https://doi.org/10.5169/seals-57711
Article
Google Scholar
Müntener, O., Manatschal, G., Desmurs, L., & Pettke, T. (2010). Plagioclase peridotites in ocean–continent transitions: Refertilized mantle domains generated by melt stagnation in the shallow mantle lithosphere. Journal of Petrology, 51(1–2), 255–294.
Article
Google Scholar
Mysen, B. O., & Boettcher, A. (1975). Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. Journal of Petrology, 16(1), 520–548. https://doi.org/10.1093/petrology/16.1.520
Article
Google Scholar
Niida, K., & Green, D. (1999). Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135(1), 18–40. https://doi.org/10.1007/s004100050495
Article
Google Scholar
Nozaka, T. (2011). Constraints on anthophyllite formation in thermally metamorphosed peridotites from southwestern Japan. Journal of Metamorphic Geology, 29(4), 385–398. https://doi.org/10.1111/j.1525-1314.2010.00921.x
Article
Google Scholar
Padrón-Navarta, J. A., Hermann, J., Garrido, C. J., Sánchez-Vizcaíno, V. L., & Gómez-Pugnaire, M. T. (2010). An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contributions to Mineralogy and Petrology, 159(1), 25. https://doi.org/10.1007/s00410-009-0414-5
Article
Google Scholar
Padrón-Navarta, J. A., Lopez Sanchez-Vizcaino, V., Garrido, C. J., & Gómez-Pugnaire, M. T. (2011). Metamorphic record of high-pressure dehydration of antigorite serpentinite to chlorite harzburgite in a subduction setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology, 52(10), 2047–2078. https://doi.org/10.1093/petrology/egr039
Article
Google Scholar
Padrón-Navarta, J. A., Sánchez-Vizcaíno, V. L., Hermann, J., Connolly, J. A., Garrido, C. J., Gómez-Pugnaire, M. T., & Marchesi, C. (2013). Tschermak’s substitution in antigorite and consequences for phase relations and water liberation in high-grade serpentinites. Lithos, 178, 186–196. https://doi.org/10.1016/j.lithos.2013.02.001
Article
Google Scholar
Pattison, D. R. M., De Capitani, C., & Gaidies, F. (2011). Petrological consequences of variations in metamorphic reaction affinity. Metamorphic Geology, 29, 953–977.
Article
Google Scholar
Pawley, A. (2003). Chlorite stability in mantle peridotite: The reaction clinochlore+enstatite = forsterite+pyrope+H2O. Contributions to Mineralogy and Petrology, 144(4), 449–456. https://doi.org/10.1007/s00410-002-0409-y
Article
Google Scholar
Pfiffner, M. (1998). Genese der hochdruckmetamorphen ozeanischen Abfolge der Cima Lunga-Einheit (Zentralalpen) (PhD Thesis). ETH Zurich.
Google Scholar
Pinsent, R., & Hirst, D. (1977). The metamorphism of the Blue River ultramafic body, Cassiar, British Columbia, Canada. Journal of Petrology, 18(4), 567–594. https://doi.org/10.1093/petrology/18.4.567
Article
Google Scholar
Pitzer, K. S., & Sterner, S. M. (1994). Equations of state valid continuously from zero to extreme pressures for H2O and CO2. The Journal of Chemical Physics, 101(4), 3111–3116. https://doi.org/10.1063/1.467624
Article
Google Scholar
Pozzorini, D. (1996). Stable isotope investigations of ophicarbonate rocks, Bergell Aureole, Valmalenco: Constraints on fluid-rock interaction. (Ph.D. Thesis). ETH Zurich.
Google Scholar
Prigent, C., Agard, P., Guillot, S., Godard, M., & Dubacq, B. (2018). Mantle wedge (de) formation during subduction infancy: Evidence from the base of the semail ophiolitic mantle. Journal of Petrology, 59(11), 2061–2092. https://doi.org/10.1093/petrology/egy090
Article
Google Scholar
Prigent, C., Warren, J., Kohli, A., & Teyssier, C. (2020). Fracture-mediated deep seawater flow and mantle hydration on oceanic transform faults. Earth and Planetary Science Letters. https://doi.org/10.1016/j.epsl.2019.115988
Article
Google Scholar
Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara, Y., Blichert-Toft, J., Bloomer, S. H., Cash, J., Fryer, P., Hanan, B. B., Hickey-Vargas, R., Ishii, T., Kimura, J.-I., Peate, D. W., Rowe, M. C., & Woods, M. (2010). Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems,. https://doi.org/10.1029/2009GC002871
Article
Google Scholar
Regenauer-Lieb, K., Yuen, D. A., & Branlund, J. (2001). The initiation of subduction: Criticality by addition of water? Science, 294(5542), 578–580. https://doi.org/10.1126/science.1063891
Article
Google Scholar
Reusser, C. E. (1987). Phasenbeziehungen im Tonalit der Bergeller Intrusion: (Graubünden, Schweiz/Provinz Sondrio, Italien). (Ph.D. Thesis). ETH Zurich.
Google Scholar
Rice, J. M., Evans, B. W., & Trommsdorff, V. (1974). Widespread Occurrence of Magnesiocummingtonite in Ultramafic Schists, Cima di Gagnone, Ticino, Switzerland. Contributions to Mineralogy and Petrology, 43, 243–251. https://doi.org/10.1007/BF00373481
Article
Google Scholar
Riklin, K. (1978). Strukturen und metamorphose im Bereich der südlichen Muretto-linie. Schweizerische Mineralogische Und Petrographische Mitteilungen, 58, 345–356. https://doi.org/10.5169/seals-45207
Article
Google Scholar
Robinson, P., Spear, F. S., Schumacher, J. C., Laird, J., Klein, C., Evans, B. W., & Doolan, B. L. (1982). Amphiboles: Petrology and experimental phase relations. Reviews in Mineralogy, 913, 1–211. https://doi.org/10.2138/rmg.1982.10.1
Article
Google Scholar
Scambelluri, M., Pettke, T., Rampone, E., Godard, M., & Reusser, E. (2014). Petrology and trace element budgets of high-pressure peridotites indicate subduction dehydration of serpentinized mantle (Cima di Gagnone, Central Alps, Switzerland). Journal of Petrology, 55(3), 459–498. https://doi.org/10.1093/petrology/egt068
Article
Google Scholar
Schroeder, T., & John, B. E. (2004). Strain localization on an oceanic detachment fault system, Atlantis Massif, 30 N, Mid‐Atlantic Ridge. Geochemistry, Geophysics, Geosystems,. https://doi.org/10.1029/2004GC000728
Article
Google Scholar
Shen, T., Zhang, C., Chen, J., Hermann, J., Zhang, L., Padrón-Navarta, J. A., Chen, L., Xu, J., & Yang, J. (2020). Changes in the cell parameters of antigorite close to its dehydration reaction at subduction zone conditions. American Mineralogist, 105, 569–582. https://doi.org/10.2138/am-2020-7159
Article
Google Scholar
Shervais, J. W., Reagan, M., Godard, M., Prytulak, J., Ryan, J. G., Pearce, J., Almeev, R. R., Li, H., Haugen, E., Chapman, T., Kurz, W., Nelson, W. R., Heaton, D. E., Kirchenbaur, M., Shimizu, K., Sakuyama, T., Vetter, S. K., Li, Y., Whattam, S., & Chapman, T. (2021). Magmatic response to subduction initiation, part II: Boninites and related rocks of the Izu-Bonin Arc from IOPD Expedition 352. Geochemistry, Geophysics, Geosystems. https://doi.org/10.1029/2020GC009093
Article
Google Scholar
Shervais, J. W., Reagan, M., Haugen, E., Almeev, R. R., Pearce, J. A., Prytulak, J., Ryan, J. G., Whattam, S. A., Godard, M., Chapman, T., Li, H., Kurz, W., Nelson, W. R., Heaton, D., Kirchenbaur, M., Shimizu, K., Sakuyama, T., Li, Y., & Vetter, S. K. (2019). Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1), 314–338. https://doi.org/10.1029/2018GC007731
Article
Google Scholar
Springer, R. K. (1974). Contact metamorphosed ultramafic rocks in the western Sierra Nevada foothills, California. Journal of Petrology, 15(1), 160–195. https://doi.org/10.1093/petrology/15.1.160
Article
Google Scholar
Staub, R. (1921). Über den Bau des Monte della Disgrazia (Vol. 66). Naturforschende Gesellschaft Zürich.
Google Scholar
Staub, R. (1946). Geologische Karte der Bernina-Gruppe 1:50,000. Schweizerische geologische Kommission.
Google Scholar
Stern, R. J., & Gerya, T. (2018). Subduction initiation in nature and models: A review. Tectonophysics, 746, 173–198. https://doi.org/10.1016/j.tecto.2017.10.014
Article
Google Scholar
Stucki, A. (2001). High grade Mesozoic ophiolites of the southern steep belt, Central Alps. (PhD thesis). ETH Zurich.
Google Scholar
Tracy, R. J., & Frost, R. B. (1991). Phase equilibria and thermobarometry of calcareous, ultramafic and mafic rocks, and iron formations. Reviews in Mineralogy, 26, 207–289. https://doi.org/10.2138/rmg.1991.26.5
Article
Google Scholar
Trommsdorff, V. (1974). Alpine metamorphism of peridotitic rocks. Schweizerische Mineralogische Petrogrographische Mitteilungen, 54, 333–352. https://doi.org/10.5169/seals-42198
Article
Google Scholar
Trommsdorff, V., & Connolly, J. A. D. (1996). The ultramafic contact aureole about the Bregaglia (Bergell) tonalite: Isograds and a thermal model. Schweizerische Mineralogische Und Petrographische Mitteilungen, 76, 537–547. https://doi.org/10.5169/seals-57714
Article
Google Scholar
Trommsdorff, V., & Evans, B. W. (1972). Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). American Journal of Science, 272(5), 423–437. https://doi.org/10.2475/ajs.272.5.423
Article
Google Scholar
Trommsdorff, V., & Evans, B. W. (1977). Antigorite-ophicarbonates: Contact metamorphism in Valmalenco, Italy. Contributions to Mineralogy and Petrology, 62(3), 301–312. https://doi.org/10.1007/BF00371017
Article
Google Scholar
Trommsdorff, V., & Evans, B. W. (1980). Titanian hydroxyl-clinohumite: Formation and breakdown in antigorite rocks (Malenco, Italy). Contributions to Mineralogy and Petrology, 72(3), 229–242. https://doi.org/10.1007/BF00376142
Article
Google Scholar
Trommsdorff, V., Montrasio, A., Hermann, J., Müntener, O., Spillmann, P., & Gieré, R. (2005). The geological map of Valmalenco. Schweizerische Mineralogische Und Petrographische Mitteilungen, 85(1), 1–13. https://doi.org/10.5169/seals-1650
Article
Google Scholar
Trommsdorff, V., Piccardo, G., & Montrasio, A. (1993). From magmatism through metamorphism to sea floor emplacement of subcontinental Adria lithosphere during pre-Alpine rifting (Malenco, Italy). Schweizerische Mineralogische Und Petrographische Mitteilungen, 73(2), 191–203. https://doi.org/10.5169/seals-55569
Article
Google Scholar
Trommsdorff, V., Sánchez-Vizcaíno, V. L., Gomez-Pugnaire, M., & Müntener, O. (1998). High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contributions to Mineralogy and Petrology, 132(2), 139–148. https://doi.org/10.1007/s004100050412
Article
Google Scholar
Trommsdorff, V., & Schwander, H. (1969). Brucitmarmore in den Bergelleralpen. Schweizerische Mineralogische Petrogrographische Mitteilungen, 49, 333–340. https://doi.org/10.5169/seals-38594
Article
Google Scholar
Trümpy, R., & Trommsdorff, V. (1980). Alps of Eastern Switzerland, Exkurssion 4; with a contribution by S. Metzeltin. Schweizerische Geologische Kommission, Verlag Wenk.
Google Scholar
Ueda, K., Gerya, T., & Sobolev, S. V. (2008). Subduction initiation by thermal–chemical plumes: Numerical studies. Physics of the Earth and Planetary Interiors, 171(1–4), 296–312. https://doi.org/10.1016/j.pepi.2008.06.032
Article
Google Scholar
Ulmer, P., & Trommsdorff, V. (1999). Phase relations of hydrous mantle subducting to 300 km (pp. 259–281). Geochemical Society.
Google Scholar
Van der Lee, S., Regenauer-Lieb, K., & Yuen, D. A. (2008). The role of water in connecting past and future episodes of subduction. Earth and Planetary Science Letters, 273(1–2), 15–27. https://doi.org/10.1016/j.epsl.2008.04.041
Article
Google Scholar
Vavrecka-Sidler, D. M. (1998). Aluminium Tschermak substitution in chlorite in the system MgO–Al2O3–SiO3–H2O—a theoretical and experimental approach. (Ph.D. Thesis). ETH Zurich.
Google Scholar
Vils, F., Pelletier, L., Kalt, A., Müntener, O., & Ludwig, T. (2008). The lithium, boron and beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere. Geochimica Et Cosmochimica Acta, 72(22), 5475–5504. https://doi.org/10.1016/j.gca.2008.08.005
Article
Google Scholar
Vissers, R., Drury, M., Hoogerduijn, E., Spiers, C., & Van der Wal, D. (1995). Mantle shear zones and their effect on lithosphere strength during continental breakup. Tectonophysics, 249(3–4), 155–171. https://doi.org/10.1016/0040-1951(95)00033-J
Article
Google Scholar
von Blackenburg, F. (1992). Combined high-precision chronometry and geochemical tracing using accessory minerals: Applied to the Central-Alpine Bergell intrusion (central Europe). Chemical Geology, 100(1–2), 19–40. https://doi.org/10.1016/0009-2541(92)90100-J
Article
Google Scholar
Wang, J., Takahashi, E., Xiong, X., Chen, L., Li, L., Suzuki, T., & Walter, M. J. (2020). The water-saturated solidus and second critical endpoint of peridotite: Implications for magma genesis within the mantle wedge. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019452.
Google Scholar
Weiss, M. (1997). Clinohumites: a field and experimental study. (PhD Thesis). ETH Zurich.
Google Scholar
Wenk, H. R., & Cornelius, S. B. (1977). Geologischer Atlas der Schweiz I: 25,000, Blatt No. 1296 Sciora. Schweizerische Geologische Kommission.
Google Scholar
Wenk, H. R., Wenk, E., & Wallace, J. H. (1974). Metamorphic mineral assemblages in pelite rocks of the Bergell Alps. Schweizerische Mineralogische Und Petrographische Mitteilungen, 54(2/3), 507–554. https://doi.org/10.5169/seals-42208
Article
Google Scholar
Whattam, S. A., & Stern, R. J. (2015). Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: The first documented example with implications for the onset of plate tectonics. Gondwana Research, 27(1), 38–63. https://doi.org/10.1016/j.gr.2014.07.011
Article
Google Scholar
White, R., Powell, R., Holland, T., Johnson, T., & Green, E. (2014). New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. Journal of Metamorphic Geology, 32(3), 261–286.
Article
Google Scholar
Wunder, B., Wirth, R., & Gottschalk, M. (2001). Antigorite pressure and temperature dependence of polysomatism and water content. European Journal of Mineralogy, 13(3), 485–496. https://doi.org/10.1127/0935-1221/2001/0013-0485
Article
Google Scholar